Math, asked by lokeshbande1, 10 months ago

..............
.


... ​

Attachments:

Answers

Answered by abhi569
2

Answer:

18

Step-by-step explanation:

⇒ x^2 - 4x = 1

⇒ x^2 - 1 = 4x

⇒ ( x^2 - 1 ) / x = 4

⇒ x - 1 / x = 4

       Square on both sides:

⇒ ( x - 1 / x )^2 = 4^2

⇒ x^2 + 1 / x^2 - 2( x * 1 / x ) = 16

⇒ x^2 + 1 / x^2 - 2( 1 ) = 16

⇒ x^2 + 1 / x^2 - 2 = 16

⇒ x^2 + 1 / x^2 = 16 + 2 = 18

Answered by Anonymous
2

\huge\sf\red{Answer:}

Given:

\sf x^2 - 4x = 1

Find:

\sf x^2 + \dfrac{1}{x^2}

Calculations:

\sf x^2 - 4x = 1

\sf x^2 - 1 = 4x

\sf \dfrac{(x^2 - 1)}{x} = 4

\sf \dfrac{x - 1}{x} = 4

Squaring both the sides:

\sf \dfrac{(x - 1}{x)}^2 = 4^2

\sf \dfrac{x^2 + 1}{x^2} - 2( \dfrac{x \times 1}{x}) = 16

\sf \dfrac{x^2 + 1}{x^2 - 2 \: (1)}= 16

\sf \dfrac{x^2 + 1}{x^2 - 2} = 16

{\sf{\underline{\boxed{\green{\sf{\dfrac{x^2 + 1}{x^2 = 16 + 2} = 18}}}}}}

Therefore, 18 is the answer.

Similar questions