__________________↑↑
Answers
Answer:
Step-by-step explanation:
LHS=(sin0-cos0+1) / (sin0+cos0-1)
dividing by cos0 with both numerator and denominator
=,(sin0/cos0-cos0/cos0+1,/cos0) / (sin0/cos0+cos0/cos0-1/cos0
=(tan0+ sec0-1) / (tan0-sec0+1)
multiply (tan0-sec0) with both numerator and denominator
=(tan0+sec0-1) ( tan0-sec0) / (tan0-sec0+1) (tan0-sec0)
=[(tan^0-sec^0) - ( tan0-sec0)] / (tan0-sec0+1)(tan0-sec0)
=(-1-tan0+sec0) / (tan0-sec0+1)( tan0- sec0). [hence, sec^0-tan^0= 1]
= -1/(tan0-sec0)
= 1 / ( sec0-tan0)= RHS
(sinθ - cosθ +1 )/(sinθ +cosθ -1)
dividing numerator and denominator by cosθ
[(sinθ - cosθ +1 )cosθ]/[(sinθ +cosθ -1)/cosθ]
=(tanθ -1 + secθ )/(tanθ +1 - sec θ)
=(tanθ + secθ -1)/(tanθ - sec θ+1)
As, sec²θ- tan²θ = 1
(secθ -tanθ)(secθ +tanθ) = 1
putting this in numerator,
[(tanθ + secθ -(sec²θ- tan²θ)]/(tanθ - sec θ+1)
=[(tanθ + secθ) -(secθ- tanθ)(secθ+tanθ)]/(tanθ - sec θ+1)
=(tanθ+secθ)[1- (secθ - tanθ)]/(tanθ - sec θ+1)
=(tanθ+secθ)[1- secθ + tanθ)]/(tanθ - sec θ+1)
=(tanθ+secθ)
Now, multiplying and dividing by (secθ- tanθ)
[(tanθ+secθ)×(secθ- tanθ)]/(secθ- tanθ)
=(sec²θ- tan²θ)/(secθ- tanθ)
= 1/(secθ- tanθ)
=RHS