Math, asked by Anonymous, 9 months ago

___________________??

Attachments:

Answers

Answered by pulakmath007
3

\huge{\mathcal{\underline{\green{SOLUTION}}}}

Let

I = \displaystyle \int\limits_{0}^{1}  {tan}^{ - 1}  \: ({ \frac{1}{ {x}^{2}  - x  + 1} )} \, dx </p><p>

  \implies \: I = \displaystyle \int\limits_{0}^{1}  {tan}^{ - 1}  \: ({ \frac{x + (1 - x)}{ 1  -  x(1 - x)} )} \, dx </p><p>

 \implies I =  \displaystyle \int\limits_{0}^{1}  {tan}^{ - 1}{x} \, dx \:  + \int\limits_{0}^{1}  {tan}^{ - 1}{(1 - x)} \, dx

We know that

\displaystyle \int\limits_{0}^{a}  f({x}) \, dx = \displaystyle \int\limits_{0}^{a}  f(a - {x}) \, dx

So

 \implies I =  \displaystyle \int\limits_{0}^{1}  {tan}^{ - 1}{x} \, dx \:  + \int\limits_{0}^{1}  {tan}^{ - 1}{(1 -  (1 - x))} \, dx

 \implies I =  2\displaystyle \int\limits_{0}^{1}  {tan}^{ - 1}{x} \, dx \:

Again

  \displaystyle \int\ {tan}^{ - 1}{x} \, dx \:

 = x {tan}^{ - 1} x -  \frac{1}{2}  log( {x}^{2}  + 1)

Hence

 \implies I =  2\displaystyle \int\limits_{0}^{1}  {tan}^{ - 1}{x} \, dx \:

 =2 \times  \left. \ {x {tan}^{ - 1}x -  \frac{1}{2}  log( {x}^{2}  + 1)  } \right|_0^1

 = 2( \frac{\pi}{4}  -  \frac{1}{2}  log(2))

\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Answered by Anonymous
3

Let

I = \displaystyle \int\limits_{0}^{1} {tan}^{ - 1} \: ({ \frac{1}{ {x}^{2} - x + 1} )} \, dxI=0∫1tan−1(x2−x+11)dx

\implies \: I = \displaystyle \int\limits_{0}^{1} {tan}^{ - 1} \: ({ \frac{x + (1 - x)}{ 1 - x(1 - x)} )} \, dx⟹I=0∫1tan−1(1−x(1−x)x+(1−x))dx

\implies I = \displaystyle \int\limits_{0}^{1} {tan}^{ - 1}{x} \, dx \: + \int\limits_{0}^{1} {tan}^{ - 1}{(1 - x)} \, dx⟹I=0∫1tan−1xdx+0∫1tan−1(1−x)dx

We know that

\displaystyle \int\limits_{0}^{a} f({x}) \, dx = \displaystyle \int\limits_{0}^{a} f(a - {x}) \, dx0∫af(x)dx=0∫af(a−x)dx

So

\implies I = \displaystyle \int\limits_{0}^{1} {tan}^{ - 1}{x} \, dx \: + \int\limits_{0}^{1} {tan}^{ - 1}{(1 - (1 - x))} \, dx⟹I=0∫1tan−1xdx+0∫1tan−1(1−(1−x))dx

\implies I = 2\displaystyle \int\limits_{0}^{1} {tan}^{ - 1}{x} \, dx \:⟹I=20∫1tan−1xdx

Again

\displaystyle \int\ {tan}^{ - 1}{x} \, dx \:∫ tan−1xdx</p><p>= x {tan}^{ - 1} x - \frac{1}{2} log( {x}^{2} + 1)=xtan−1x−21log(x2+1)

Hence

\implies I = 2\displaystyle \int\limits_{0}^{1} {tan}^{ - 1}{x} \, dx \:⟹I=20∫1tan−1xdx

=2 \times \left. \ {x {tan}^{ - 1}x - \frac{1}{2} log( {x}^{2} + 1) }

\right|_0^1=2× xtan−1x−21log(x2+1)∣∣∣01

= 2( \frac{\pi}{4} - \frac{1}{2}

log(2))=2(4π−21log(2))

Similar questions