Math, asked by Anonymous, 9 months ago

____________________??

Attachments:

Answers

Answered by pulakmath007
4

\huge{\mathcal{\underline{\green{SOLUTION}}}} </p><p></p><p>

Let \:  \:  I   \:  = \displaystyle \int\limits  \frac{ {tan}^{ - 1}x }{1 +  \frac{1}{ {x}^{2} } }  \, dx </p><p>

 = \displaystyle \int\limits    \frac{ {x}^{2}  {tan}^{ - 1}x }{1 +  {x}^{2} }  \, dx

Let \: x \:  = tan \theta

Then \: dx \:  =   {sec}^{2} \theta \: d \theta

So

I \:  =  \displaystyle \int\limits    \frac{ {tan}^{2} \theta  {tan}^{ - 1}(tan \theta) }{{sec}^{2} \theta }  \,  {sec}^{2}  \theta \: d \theta

 =  \displaystyle \int\limits    \theta \ {tan}^{2}  \theta  \: d \theta

 =  \displaystyle \int\limits    \theta \ ({sec}^{2}  \theta  - 1) \: d \theta

 =  \displaystyle \int\limits    \theta \ {sec}^{2}  \theta  \: d \theta -   \displaystyle \int\limits    \theta \  \: d \theta

 =  \theta \: tan \theta \:  -  log( |sec \theta| ) -   \frac{ { \theta}^{2} }{2}  + c

 = x {tan}^{ - 1} x \:  -  log( | \sqrt{1 +  {x}^{2} } | )  -  \:  \frac{ ( {{tan}^{ - 1} x)}^{2} }{2}  + c

\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Answered by ʙʀᴀɪɴʟʏᴡɪᴛᴄh
24

Letx=tanθ

 Then \: dx \: = {sec}^{2} \theta \: d \thetaThendx=sec2θdθ

</p><p>∫θ sec2θdθ−∫θ dθ</p><p>= \theta \: tan \theta \: - log( |sec \theta| ) - \frac{ { \theta}^{2} }{2} + c=θtanθ−log(∣secθ∣)−2θ2+c</p><p>

Similar questions