Math, asked by Anonymous, 8 months ago

____________________??

Attachments:

Answers

Answered by pulakmath007
4

\huge{\mathcal{\underline{\green{SOLUTION}}}}

Let,

x =  {tan}^{ - 1}  \sqrt{3}

 \implies \: tanx \:  =  \sqrt{3}

Now the range of principal value of

 {tan}^{ - 1} x \:  \: is \:  \: ( -  \frac{\pi}{2}  ,  \frac{\pi}{2} )

Hence

{tan}^{ - 1}  \sqrt{3}  =  \frac{\pi}{3}

Again let

y =  {sec}^{ - 1} ( - 2)

So

 \implies \: sec \: y =  - 2

Now the principal value of

 {sec}^{ - 1} x \:  \: is \:  \: [0 ,\pi ]  -  \frac{\pi}{2}

Hence

 {sec}^{ - 1} ( - 2) =   \frac{2\pi}{3}

Therefore

 {tan}^{ - 1}  \sqrt{3}  \:  -  \:  {sec}^{ - 1} ( - 2) =  \frac{\pi}{3}  -  \frac{2\pi}{3}  =  -  \frac{\pi}{3}

Answered by guptasant72
0

Answer:

Let x= cos-1(12/13)

Cosx =12/13

Sinx = root over 1-cos²x

=Root over 1-(12/13)²

=root over 1-144/169

=root over 25/169

Sinx=5/13

Again let y= sin -¹3/5

Sin y=3/5

Cos y=root over 1-sin²y

=root over 1-(3/5)²

=root over 1-9/25

=root over 16/25

Cos y = 4/5

Sin (x+y)= sinxcosy + cosxsiny

Sin(x+y)= 5/13×4/5+12/13×3/5

20/65 + 36/65

56/65

Sin(x+y) = 56/65

x+y= sin-¹ 56/65

cos-¹(12/13) + sin-¹(3/5) = sin-¹(56/65)

So the answer is option d

Similar questions