Math, asked by Anonymous, 10 months ago

_____________________??

Attachments:

Answers

Answered by pulakmath007
3

\huge\boxed{\underline{\underline{\green{\tt Solution}}}}

SUPPOSE

 \displaystyle \:  I  \:  = \displaystyle \int\ { \frac{2x \:  {sin}^{ - 1} 2x}{ \sqrt{1 - 4 {x}^{2} } } } \, dx ........(1)

Let

2x = sin \theta \:

Then

2 \: dx = cos \theta \: d\theta

So From Equation (1)

 \displaystyle \:  I  \:  = \displaystyle(1/2) \int\ { \frac{ \theta \: sin \theta \:  }{ \sqrt{1 -  {sin}^{2}  \theta} } } \, cos d \theta

 \displaystyle \:  I  \:  = \displaystyle (1/2)\int\ { \frac{ \theta \: sin \theta \:  }{ \sqrt{{cos}^{2}  \theta} } } \, cos d \theta

  \displaystyle \:  I  \:  = \displaystyle (1/2)\int\  { \theta \: sin \theta \:  } d \theta

  \displaystyle \:  I  \:  = \displaystyle (1/2)( -  \theta \: cos \theta + sin \theta + c)

Since

2x = sin \theta \:

So

x \:  = 0 \: gives \:  \theta = 0

x =  \frac{ \sqrt{3} }{4}  \:  \: gives \:  \theta =  \frac{\pi}{3}

Hence the given Integral

  = \displaystyle  \left. {(1/2)( -  \theta cos \theta \:  + sin \theta} + c) \right|_0^ \frac{\pi}{3}

 =  \displaystyle \:(1/2) ( -  \frac{\pi}{3} cos  \frac{\pi}{3}  +  \sin \frac{\pi}{3}  + c)  -(1/2) (0 + sin0 + c)

 =  \displaystyle \: ( -  \frac{\pi}{12}  +  \frac{ \sqrt{3} }{4} )

Answered by Anonymous
0

\int _0^{\frac{1}{4}\sqrt{3}}\frac{\left(\:2xsin^{-1}2x\right)}{\sqrt{1-4x^2}}dx

ANSWER :-

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=2\cdot \int _0^{\frac{1}{4}\sqrt{3}}\frac{x\arcsin \left(2x\right)}{\sqrt{1-4x^2}}dx

\mathrm{Apply\:u-substitution:}\:u=2x

=2\cdot \int _0^{\frac{\sqrt{3}}{2}}\frac{u\arcsin \left(u\right)}{4\sqrt{1-u^2}}du

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=2\cdot \frac{1}{4}\cdot \int _0^{\frac{\sqrt{3}}{2}}\frac{u\arcsin \left(u\right)}{\sqrt{1-u^2}}du

\frac{u\arcsin \left(u\right)}{\sqrt{1-u^2}}=\left(u\arcsin \left(u\right)\right)\frac{1}{\sqrt{1-u^2}}

=2\cdot \frac{1}{4}\cdot \int _0^{\frac{\sqrt{3}}{2}}u\arcsin \left(u\right)\frac{1}{\sqrt{1-u^2}}du

\mathrm{Apply\:Integration\:By\:Parts:}\:u=\arcsin \left(u\right),\:v'=\frac{1}{\sqrt{1-u^2}}u

=2\cdot \frac{1}{4}\left[-\arcsin \left(u\right)\sqrt{1-u^2}-\int \:-1du\right]^{\frac{\sqrt{3}}{2}}_0

\int \:-1du=-u

= 2\cdot \frac{1}{4}\left[-\arcsin \left(u\right)\sqrt{1-u^2}-\left(-u\right)\right]^{\frac{\sqrt{3}}{2}}_0

\mathrm{Simplify\:}2\cdot \frac{1}{4}\left[-\arcsin \left(u\right)\sqrt{1-u^2}-\left(-u\right)\right]^{\frac{\sqrt{3}}{2}}_0:\quad \frac{1}{2}\left[-\arcsin \left(u\right)\sqrt{1-u^2}+u\right]^{\frac{\sqrt{3}}{2}}_0

=\frac{1}{2}\left[-\arcsin \left(u\right)\sqrt{1-u^2}+u\right]^{\frac{\sqrt{3}}{2}}_0

\mathrm{Compute\:the\:boundaries}:\quad \left[-\arcsin \left(u\right)\sqrt{1-u^2}+u\right]^{\frac{\sqrt{3}}{2}}_0=\frac{\sqrt{3}}{2}-\frac{\pi }{6}

=\frac{1}{2}\left(\frac{\sqrt{3}}{2}-\frac{\pi }{6}\right)

\mathrm{Simplify}

=\frac{3\sqrt{3}-\pi }{12}

Similar questions