Math, asked by Anonymous, 8 months ago

____________________??

Attachments:

Answers

Answered by anushkasharma8840
10

Answer:

option (b) π/3

Step-by-step explanation:

 a \:  =  \binom{cos \alpha \:  \:   - sin \alpha }{sine \alpha  \:  \:  \:  \: cos \alpha }  \\ a 1 \: =  \binom{cos \alpha  \:  \:  \: sin \alpha }{ - sine \alpha  \:  \:  \:  \: cos \alpha }  \\  \\ now. \\ a  +  a1 = i \\  \\  \binom{2 \cos( \alpha )  \:  \:  \: \: 0 }{0 \:  \:  \:  \: 2 \cos( \alpha ) }  =  \binom{1 \:  \:  \: 0}{0 \:  \:  \: 1}  \\ </p><p> comparing the corresponding</p><p>     element of two matrix </p><p>  ,we have</p><p>2 \cos( \alpha  )  = 1 \\  \\  \cos( \alpha )  =  \frac{1}{2}  \\  \\  \cos(  \frac{\pi}{2} )  \\  \\  \\ therefore \:   \:  \: \alpha  =  \frac{\pi}{3}

Answered by Lueenu22
1

Step-by-step explanation:

Answer:

option (b) π/3

Step-by-step explanation:

$$\begin{lgathered}a \: = \binom{cos \alpha \: \: - sin \alpha }{sine \alpha \: \: \: \: cos \alpha } \\ a 1 \: = \binom{cos \alpha \: \: \: sin \alpha }{ - sine \alpha \: \: \: \: cos \alpha } \\ \\ now. \\ a + a1 = i \\ \\ \binom{2 \cos( \alpha ) \: \: \: \: 0 }{0 \: \: \: \: 2 \cos( \alpha ) } = \binom{1 \: \: \: 0}{0 \: \: \: 1} \\ comparing the corresponding element of two matrix ,we have 2 \cos( \alpha ) = 1 \\ \\ \cos( \alpha ) = \frac{1}{2} \\ \\ \cos( \frac{\pi}{2} ) \\ \\ \\ therefore \: \: \: \alpha = \frac{\pi}{3}\end{lgathered}$$

Similar questions