Math, asked by vatsaldwi19898, 9 months ago

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑​

Attachments:

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
13

\huge\sf\pink{Answer}

☞ Your answer is 61

━━━━━━━━━━━━━

\huge\sf\blue{Given}

\sf a+b=9

\sf ab=10

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Value of a²+b²?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

\underline{\sf As \ Per \ the \ Question}

\sf a+b=9\:\:\: -eq(1)

Also given that,

\sf ab=10 \:\:\: -eq(2)

So here I'll show you two methods,you may choose the one you feel is easy,

Method 1

Squaring both sides of eq(1)

\sf a+b=9

\sf (a+b)^2=9^2

\sf (a+b)^2 = 81

We know that,

\sf \underline{\boxed{\sf (a+b)^2 = a^2+2ab+b^2}}

\sf a^2+2ab+b^2 = 81

\bigg\lgroup\sf Sub \ value \ of \ eq(2)\bigg\rgroup

\sf a^2+2(10)+b^2=81

\sf a^2+20+b^2=81

\sf a^2+b^2 = 81-20

\sf \orange{a^2+b^2 = 61}

Method 2

»» \sf a^2+b^2

\underline{\boxed{\sf a^2+b^2=(a+b)^2 - 2ab}}

\sf (a+b) = 9 \ and \ ab = 10

»» \sf (9)^2-2(10)

»» \sf 81-20

»» \sf \red{a^2+b^2 = 61}

━━━━━━━━━━━━━━━━━━

Similar questions