Math, asked by ItzRuchika, 7 months ago

ωнαт'ѕ тнє αηѕωєя? ​

Attachments:

Answers

Answered by Anonymous
2

GIVEN :-

[ note : taking ∅ as a ]

  • 2cos a - cos 3a - cos 5a - 16 cos³a sin² a

TO FIND :-

  • value of :- 2cos a - cos 3a - cos 5a - 16 cos³a sin² a

SOLUTION :-

now , we have given that

 \implies \rm{2cos \: a - cos \: 3a - cos \: 5a - 16cos {}^{3}a \: sin {}^{2} a }

now solving for cos 3a and cos 5a

 \implies \rm{2cos \: a -( cos \: 5a  + cos \: 3a) - 16cos {}^{3}a \: sin {}^{2} a }

now we know that

 \implies \boxed {\rm{cos \: x + cos \: y =2 \:   cos(\dfrac{x + y}{2}) \: cos( \dfrac{x - y}{2})  }}

hence,

 \implies  \rm{\small{2cos \: a -(2 \:   cos(\dfrac{5a + 3a}{2}) \: cos( \dfrac{5a- 3a}{2})) - 16cos {}^{3}a \: sin {}^{2} a  }}\:

[ here X = 5a and y = 3a ]

now , solving further :-

  \implies \rm{2cos \: a -(2 \:   cos(\dfrac{8a}{2}) \: cos( \dfrac{2a}{2})) - 16cos {}^{3}a \: sin {}^{2} a  }\:

 \implies \rm{2cos \: a -(2 \:   cos \: 4a \: . \: cos \: a) - 16cos {}^{3}a \: sin {}^{2} a  }\:

now taking common ,

4cos a from term 16 cos³a sin²a,

 \implies \rm{2cos \: a -(2 \:   cos \: 4a \: . \: cos \: a) - 4cos  \: a (\: 4cos^{2}a \: sin {}^{2} a  )}\:

now , we taking whole square from term

4cos²a sin²a =( 2cos a . sin a )²

\implies \rm{2cos \: a -(2 \:   cos \: 4a \: . \: cos \: a) - 4cos  \: a (\: 2cos \: a \: sin  \:  a  ) {}^{2} }\:

now rearranging

2 × cos a × sin a = 2 × sin a × cos a

\implies \rm{2cos \: a -(2 \:   cos \: 4a \: . \: cos \: a) - 4cos  \: a (\: 2sin \: a \: cos\:  a  ) {}^{2} }\:

now we know that ,

 \implies \boxed {\rm{2 \: sin \: x \: . \: cos \: x =sin \: 2x  }}

hence ,

2sin a . cos a = sin 2a

\implies \rm{2cos \: a -(2 \:   cos \: 4a \: . \: cos \: a) - 4cos  \: a  \: (\:sin 2 \: a) {}^{2} }\:

now rearranging terms ,

and removing brackets from

( sin 2a )² = sin² 2a

\implies \rm{2cos \: a \:- 4cos  \: a  \: .\:sin {}^{2}  \:  2   a  -(2 \:   cos \: 4a \: . \: cos \: a)  }\:

now taking 2cos a common,

\implies \rm{2cos \: a (1- 2  \  \sin {}^{2}  \:  2   a  )-(2 \:   cos \: 4a \: . \: cos \: a)  }\:

now we know that ,

 \implies \boxed {\rm{cos \: 2x \:  = 1 - 2 \: sin {}^{2}x }}

hence ,

1 - 2 sin² 2a = cos 4a

[ note that there is 2a instead of a hence it will be 4a instead of 2a ]

\implies \rm{2cos \: a  \: (cos   \: 4a)-(2 \:   cos \: 4a \: . \: cos \: a)  }\:

now if we resolve and rearrange that terms we see both are same hence both will cancel out and we get 0

\implies \rm{\small{(2 \times cos \: a  \:  \times cos   \: 4a)-(2   \times  cos \: a  \times  cos \:4 a)  = 0 }}\:

hence ,

 \implies  \boxed{ \boxed{\rm{ \small{2cos \: a - cos \: 3a - cos \: 5a - 16cos {}^{3}a \: sin {}^{2} a  = 0}}}}

so option c is correct

Answered by beherasaraswati1977
2

Answer:

a.2

b.1

c.0

d.4

Step-by-step explanation:

thank you for following me

Similar questions