śȏʟṿє ıṭ
❌Ԁȏṅ'ṭ śקѧṃ ❌
Answers
Given : √1 - x² + √1 - y² = a (x - y)
To Find : Show that dy/dx = √1 - y² / √1 - x²
Solution:
√1 - x² + √1 - y² = a (x - y)
=> -2x/2√1 - x² +( -2y/2√1 - y² )dy/dx = a - a dy/dx
=> -x/√1 - x² -dy/dx . y/(√1 - y² ) = a - dy/dx.a
=> dy/dx(a - y/(√1 - y² )) = a + x/√1 - x²
=> dy/dx ( a√1 - y² - y)/√1 - y² = (a√1 - x² + x)/√1 - x²
=> dy/dx = (a√1 - x² + x) √1 - y² / ( ( a√1 - y² - y) √1 - x²
Solving for (a√1 - x² + x) / ( a√1 - y² - y)
Given : √1 - x² + √1 - y² = a (x - y) => a = (√1 - x² + √1 - y² )/(x - y)
Substitute a
={√1 - x² (√1 - x² + √1 - y² )/(x - y) + x } / { √1 - y² (√1 - x² + √1 - y² )/(x - y) - y}
= (1 - x² + √1 - x²√1 - y² + x² - xy) / ( √1 - y² √1 - x² + 1 - y² - xy + y²)
= (1 + √1 - x²√1 - y² - xy) / ( √1 - y² √1 - x² + 1 - xy )
= 1
Substitute this in dy/dx
Hence
dy/dx = √1 - y² / √1 - x²
Learn More:
y = sin^{-1} 2x sqrt{1-x^{2}} dy/dx ज्ञात कीजिए
https://brainly.in/question/15286655
y = rac{e^{x}}{sin x} dy/dx ज्ञात कीजिए
https://brainly.in/question/15286649