Hindi, asked by jlaxmidhar0, 5 months ago

। ଛୁତ୍ରମାନଙ୍କର ପାଠେର ଆଗ୍ରହ ନାହିଁ ।

Answers

Answered by itzlegend07
0

Explanation:

\orange{\bold{\underbrace{\overbrace{❥Question᎓}}}}

Integrate the function

\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times \frac{cosx}{cosx}}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt \frac{ \sqrt{tanx} }{sinx \times \frac{ {cos}^{2} x}{cosx}} ㅤ ㅤ ㅤ

\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times \frac{sinx}{cosx} }

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }

\huge\tt {tan}^{ \frac{1}{2} - 1 } \times \frac{1}{ {cos}^{2} x}ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x⇛(tan)

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = ∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx⇛(tan)

ㅤ ㅤ ㅤ ㅤ ㅤ

\bold\blue{☛\: Let tanx=t}

\bold\blue{☛ \:Differentiating \: both \: sides \: w.r.t.x}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt {sec}^{2} x = \frac{dt}{dx}

\huge\tt{dx \frac{dt}{ {sec}^{2}x }}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt∴∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx

\huge\tt ∫ {(t)}^{ - \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }

\huge\tt ∫ {t}^{ - \frac{1}{2} }ㅤ ㅤ

\huge\tt\frac{ {t}^{ - \frac{1}{2} + 1} }{ - \frac{1}{2} + 1 }

\huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t}

\huge2 \sqrt{t} + c = 2 \sqrt{tanx}

════════════════════════

Similar questions