র। ২০। সারি ও কলামের সমন্বয়ে কী তৈরি হয়?
খ) সেল পয়েন্টার
গ) রাে
ঘ) কলাম
Answers
Answer:
ঊষা শা কক্ষ জসিষক কন তো আমি সেরকম একটি মেয়ে ও আসলেই একটা হাত নিয়ে যাই আর কি করবে বুঝে নিতে পারে আর আমি যদি তোমার এই জামাটা কোমরের কাছে জড়
Answer:
In linear algebra, all the column space (also called the range or image) of a matrix A is span (set of all possible linear combinations) of the column vectors. The column space of matrix is the image or range of all the corresponding matrix transformation.
Let be a field. The column of space of an m × n matrix with components from is a linear subspace of all the m-space. The dimension of the column space is also called the rank of the matrix and is at most min(m, n).A definition for all matrices over a ring is also possible.
The row spaces is defined similarly.
The row spaces and the column spaces of a matrix A are sometimes denoted as C(AT) and C(A) respectively.
This article considered matrices of real numbers. The row and column spaces are subspaces of the real spaces respectively.
The columns of A span the column space, but then they may not form a basis if the columns vector are not linearly independent. Fortunately, elementary row operation do not affect the dependence relation between the column vectors. This makes it possible to use row reduction to find a basis for the column space
#SPJ2