Economy, asked by XxCharmingGuyxX, 1 day ago

‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎​

Attachments:

Answers

Answered by TRISHNADEVI
3

ANSWER :

 \\

  • (i) Price Index of the given data by using Laspeyre's Method is 89.15
  • (ii) Price Index of the given data by using Paasche's Method is 92.62

  • (iii) Price Index of the given by using Fisher's Method is 90.87

___________________________________________________________

SOLUTION :

 \\  \\

To Calculate :-

  • (i) Price Index by using Laspeyre's Method

  • (ii) Price Index by using Paasche's Method

  • (iii) Price Index by using Fisher's Method

Required Formulas :-

  • Laspeyre's Method for calculating Price Index :

\dag \:  \:  \underline{ \boxed{\sf{p_{01} =  \dfrac{ \sum \: p_1q_0}{ \sum \: p_0q_0} \times 100}}}

  • Paasche's Method calculating Price Index :

\dag \:  \:  \underline{\boxed{\sf{p_{01} =  \dfrac{ \sum \: p_1q_1}{ \sum \: p_0q_1} \times 100}}}

  • Fisher's Method calculating Price Index :

\dag \:  \:  \underline{ \boxed{ \sf{p_{01} =  \sqrt{\dfrac{ \sum \: p_1q_0}{ \sum \: p_0q_0} \times \dfrac{ \sum \: p_1q_1}{ \sum \: p_0q_1}} \times 100}}}

____________________________________________

Calculation :-

 \\

From the data table (in the attachment), we get,

  • Σp₀q₀ = 507

  • Σp₁q₁ = 578

  • Σp₁q₀ = 452

  • Σp₀q₁ = 624

(i) Calculation of Price Index by using Laspeyre's Method :-

  • \tt{ \bigstar \:  \: p_{01} =  \dfrac{ \sum \: p_1q_0}{ \sum \: p_0q_0} \times 100}

\tt{\longrightarrow \: p_{01} =  \dfrac{452}{507} \times 100}

\tt{\therefore \: \underline{p_{01} =  89.15}}

___________________________________________________________

(ii) Calculation of Price Index by using Paasche's Method :-

  • \tt{ \bigstar \:  \: p_{01} =  \dfrac{ \sum \: p_1q_1}{ \sum \: p_0q_1} \times 100}

\tt{\longrightarrow \: p_{01} =  \dfrac{578}{624} \times 100}

\tt{\therefore \: \underline{p_{01} =  92.62}}

___________________________________________________________

(iii) Calculation of Price Index by using Fisher's Method :-

  • \tt{ \bigstar \:  \: p_{01} =  \sqrt{\dfrac{ \sum \: p_1q_0}{ \sum \: p_0q_0} \times \dfrac{ \sum \: p_1q_1}{ \sum \: p_0q_1}} \times 100 }

\tt{\longrightarrow \: p_{01} =  \sqrt{  \dfrac{452}{507} \times  \dfrac{578}{624} } \times 100 }

\tt{\therefore \: \underline{p_{01} =  90.87}}

Attachments:
Similar questions