Math, asked by aditya2102003, 1 year ago

??!!!!!!!!!!!!!!!!!?????!!!!??!!

Attachments:

Answers

Answered by Grimmjow
10

\textsf{Let the Original Duration of the Flight be : D hours}


\textsf{Given : Total Distance of the Flight (Journey) = 2800 km}


\bigstar\;\;\sf{We\;know\;that : \boxed{\sf{Average\;Speed = \dfrac{Total\;Distance\;traveled}{Total\;Time\;taken}}}}


\implies \sf{Original\;Speed\;of \;the\;Aircraft = \bigg(\dfrac{2800}{D}\bigg) km\;per\;hour}


\textsf{Given : Due to Bad Weather Conditions, The Average Speed of the Aircraft }\\\textsf{is reduced by 100 km per hour}


\implies \sf{New\;Speed\;of\;the\;Aircraft = \bigg(\dfrac{2800}{D} - 100\bigg)\;km\;per\;hour}


\textsf{Given : As the Average Speed is reduced by 100 km per hour, Time taken}\\ \textsf{to complete the journey increased by 30 Minutes = Half of an Hour}


\implies \sf{New\;Time\;taken\;to\;complete\;the\;Journey = \bigg(D + \dfrac{1}{2}\bigg) = \bigg(\dfrac{2D + 1}{2}\bigg)\;hours}


\textsf{Substituting the New values in the Average Speed Formula, We get :}


\implies \sf{\bigg(\dfrac{2800}{D} - 100\bigg) = \dfrac{2800}{\dfrac{2D + 1}{2}}}


\implies \sf{\bigg(\dfrac{2800 - 100D}{D}\bigg) = \bigg(\dfrac{5600}{2D + 1}\bigg)}


\implies \sf{\bigg(\dfrac{28 - D}{D}\bigg) = \bigg(\dfrac{56}{2D + 1}\bigg)}


\implies \sf{(28 - D)(2D + 1) = 56D}


\implies \sf{56D + 28 - 2D^2 - D = 56D}


\implies \sf{2D^2 + D - 28 = 0}


\implies \sf{2D^2 + 8D - 7D - 28 = 0}


\implies \sf{2D(D + 4) - 7(D + 4) = 0}


\sf{\implies (2D - 7)(D + 4) = 0}


\implies \sf{D = \dfrac{7}{2}\;\;(or)\;\;D = -4}


\sf{As : Time\;cannot\;be\;a\;Negative\;Value \implies D \neq -4}


\implies \sf{D = \dfrac{7}{2}\;hours}


\sf{\implies D = 3.5\;hours}


\implies \textsf{The Original Duration of the Flight = 3.5 hours}


Avengers00: nice answer (:
Grimmjow: Thank you! ^_^
aditya2102003: an ace level answerB-)
Similar questions