Math, asked by shruti6319, 1 year ago

....................​

Attachments:

Answers

Answered by Anika186
2

We have ,

x +  \frac{1}{x}  = 7

Using

【(a+b)^2 = a^2 + b^2 + 2ab】

(x +  \frac{1}{x} ) ^{2}  = x ^{2}  + ( \frac{1}{x} )^{2}  + 2.x. \frac{1}{x}

7 ^{2}  = x^{2}  +  \frac{1}{x ^{2} } + 2

49 = x^{2}  +  \frac{1}{x^{2} }  + 2

49 - 2 = x ^{2}  +  \frac{1}{x ^{2} }

x ^{2}  +  \frac{1}{x ^{2} }  = 47

Answered by himanshi5561
1

Heya ☺

Given that ,

x +  \frac{1}{x}  = 7

using identity ,

(a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab

we get ,

(x +  \frac{1}{x} ) {}^{2}  = (7) { }^{2}  \\ x { }^{2}  +  \frac{1}{x {}^{2} }  + 2 \times x \times  \frac{1}{x}  = 49 \\ x {}^{2}  +  \frac{1}{ {x {}^{2} }^{} } + 2 = 49 \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 49 - 2 \\ x {}^{2}  +   \frac{1}{x {}^{2} }  = 47

Hope it helps you

please mark as brainliest

Similar questions