Math, asked by dabbu4u2005, 1 year ago

....................​

Attachments:

Answers

Answered by TRISHNADEVI
17

 \red{ \huge{ \underline{ \overline{ \mid{ \bold{ \purple{ \:  \: QUESTION\:  \:  \red{ \mid}}}}}}}}

 \bold{ \:  \:  \: If \:  \: x {}^{2} + y {}^{2} = 25xy \:  ,\: then \:  \: prove \:  \: that  } \\  \\  \bold{2 \: log \: (x + y) = 3 \: log \: 3 \:  +  \: log \: x \:  +  \: log \: y \: .}

 \red{ \huge{ \underline{ \overline{ \mid{ \bold{ \purple{ \:  \: SOLUTION \:  \:  \red{ \mid}}}}}}}}

 \underline{ \bold{ \:  \: GIVEN \:  \ \: : }} \to \:  \:  \:  \:  \:  \bold{x {}^{2} + y {}^{2} = 25xy  } \\  \\  \\  \underline{ \bold{ \:  \:TO\:  \: PROVE\:  \:  : }} \to  \\  \\ \:  \:  \:  \bold{2 \: log \: (x + y) = 3 \: log \: 3 \:  +  \: log \: x \:  +  \: log \: y}

 \:  \:  \:  \:  \:  \:  \bold{ x {}^{2}  + y {}^{2} = 25xy } \\  \\  \underline{ \bold{ \:  \: Adding \:  \: \: '' \red{2xy} '' \:  \:  \: in \:  \: both \:  \: sides \:  \: }} \\  \\  \:  \:  \:  \:  \:  \bold{x {}^{2}  + y {}^{2}  + 2xy = 25xy + 2xy} \\  \\  \bold{ \Longrightarrow \:  \: (x + y) {}^{2}  = 27xy}

 \underline{\bold{ \:  \: Taking \:  \: logarithm \:  \: in \:  \: both \:  \:sides \:  \:  }} \\  \\   \:  \:  \:  \:  \:  \: \bold{log \: (x + y) {}^{2}  = log \: (27xy)} \\  \\  \bold{ \Longrightarrow \:  \: 2 \: log \: (x + y) = log \: 27 \:  +  \: log \: x \:  +  \: log \: y} \\  \\  \bold{ \Longrightarrow \: 2 \: log \: (x + y) = log \: (3) {}^{3} + log  \: x \:  +  \: log \: y} \\  \\  \bold{ \therefore \: 2 \: log \: (x + y) = 3 \: log \: 3 \:  +  \: log \: x \:  +  \: log \: y} \\  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \bold{ \:  \: h</p><p>Hence \:  \:  \: proved \: .}}

Answered by Anonymous
3

SOLUTION

Given :- x {}^{2}  + y {}^{2}  = 25xy

 \underline{ \:  \: </strong><strong>A</strong><strong>dding \:  \:  \: 2xy \:  \:  \:  \: in \:  \:  \: both \:  \:  \: sides \:  \: }

 \:  \:  \:  \:  \:  \:  \:  \: x {}^{2}  + y {}^{2}  + 2xy = 25xy + 2xy \\  \\  =  &gt; ( x + y) {}^{2}  = 27xy \\  \\  =  &gt; (x + y) {}^{2}  = (3) {}^{3} xy

 \underline{ \:  \: </strong><strong>T</strong><strong>aking \:  \:  \: logarithm \:  \:  \: in \:  \: both \:  \: sides \:  \: }

log \: (x + y) {}^{2} = log \: ((3) {}^{3}  xy) \\  \\   =  &gt; 2 \: log \: (x + y) = log \: (3) {}^{3} +log \:  x +log \:  y \\  \\  =  &gt; 2 \: log \: (x + y) = 3 \: log \: 3 \:  +  \: log \: x \:  +  \: log \: y

 \underline{ \huge{ \:  \: </strong><strong>H</strong><strong>ence \:  \:  \: proved \:  \: }}

Similar questions