Math, asked by rsaha729, 1 year ago

(0,0),(1,2),(-1,2) area of a triangle​

Answers

Answered by Anonymous
7

Answer:

4 units^2

Step-by-step explanation:

The base of the triangle= 4

Height=2

Area =1/2*b*h

=1/2*4*2

=4

Answered by BrainlyConqueror0901
7

\huge{\pink{\green{\sf{Area\:of\:triangle=2\:Units}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

Let \:  \triangle be \: ABC \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \orange{ \underline{given}}} \\ { \green{coordinate \: of \: A = (0,0)}} \\ { \green{coordinate \: of \: B= (1,2)}} \\{ \green{coordinate \: of \: C= ( - 1,2)}} \\   \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \red{ \underline{to \: find  :}}} \\ { \purple{area \: of \: triangle \: Abc =? }}

▪According to given question:

▪We know all the three coordinates of triangle. So,we know the formula to find area of triangle by their given coordinate.

 \to Area \: of \: triangle =  \frac{1}{2}( x_{1} ( y_{2} -  y_{3}) +  x_{2}( y_{3} -  x_{1}) +  x_{3}( y_{1} -  y_{2}))

\to Area=\frac{1}{2}(0(2-2)+1(2-0)+(-1)(0-2)\\\to Area=\frac{1}{2}(0+2+2)\\\to Area=\frac{1}{2}(4)\\{\green{\to Area=2\:units}}

_________________________________________

Similar questions