0 0
33. If the line 2x - 3y - 5 = 0 is the
perpendicular bisection of the line segment
joining (3, - 4) and (a, b) find a +B
Sol: If(a, b) is the reflection of (3,-4) in the line
2x – 3y - 5 = 0 , then
a-3 B+4 -2(6+12-5).
2x-3y-5=0
2 -3 (2)²+(-3)²
(ap) :
a-3 B+4
=-2 => a=-1, B= 2
2 -3
..a+B=-1+
2 a +B=1
Answers
Answered by
1
Answer:
In △ABC AB=AC
⇒∠B=∠C (Angles opposite to equal sides are equal)
Now using angle sum property
∠A+∠B+∠C=180
∘
⇒80
∘
+∠C+∠C=180
∘
⇒2∠C=180
∘
−80
∘
⇒∠C=
2
100
∘
=50
∘
now ∠C+∠x=180
∘
(Angles made on straight line (AC) are supplementary)
⇒50
∘
+∠x=180
∘
⇒∠x=180
∘
−50
∘
=130
∘
@ARSH
☺️☺️
♥️insta@_arsh_deep_29♥️
Similar questions