Math, asked by Salmonpanna2022, 1 month ago

*╔═══❖•ೋ° °ೋ•❖═══╗*
Question. 10 point
*╚═══❖•ೋ° °ೋ•❖═══╝*
Q.) If the radius of the base of a cylinder is increased by 20% and its height is increased by 10%, then its volume will be increased by how many percent?

Please someone thank my all answer.(╯︵╰,)​

Answers

Answered by IIAwesomeBabesII
2

The percentage change in the volume is 6.4%.

Step-by-step explanation:

Given : If the radius of a cylinder is increased by 20% and its height is decreased by 10%

Attachments:
Answered by Anonymous
9

Hey there, here is your answer of this Question ;)

_______________________________

$\underline{\fbox{${☆ \red{Required \:  solution}☆}$}}$

ɪ =   \sf\int \frac{x {}^{2}  + 3x + 2}{(x {}^{2}  + 1) {}^{2}(x + 1) } dx \\ \\  \sf ɪ =  \int \frac{(x {}^{2}  + 2x) + (1x + 2)}{(x {}^{2}  + 1) {}^{2}(x + 1) {}^{2}  }  \\  \\  \sf \: ɪ =  \int \frac{(x + 2) \red{(x + 1)}}{(x {}^{2}  + 1) {}^{2} \red{(x + 1)} }  \\  \\ ɪ =  \sf \int \frac{x + 2}{(x {}^{2}  + 1) {}^{2} } dx \\  \\ ɪ =  \sf \int \frac{x}{(x {}^{2} + 1) {}^{2}  } dx +  \int \frac{2}{(x {}^{2}  + 1) {}^{2} } dx \\  \\    \boxed{\boxed{ \green{ \sf ɪ =  ɪ_{1} +  ɪ_{2}}}} -  -  - (1) \\  \\  ɪ_{1} =  \int \sf \frac{x}{(x {}^{2}  + 1) {}^{2} } dx \\   \\  \boxed{\red{ \sf \: put \: x {}^{2}  = t} } \\  \red{ \: 2x \: dx = dt }\\ \red{x  \: d_{x} =  \frac{1}{2}dt  } \\  \\ ɪ _{1} =  \sf \frac{1}{2}  \int \frac{dt}{(t + 1) {}^{2} }  \\  \\ ɪ  _{1} =   \sf\frac{1}{2}  \frac{(t + 1) {}^{ - 1} }{ - 1}  + 0 \\  \\ ɪ _{1} =  \sf \frac{ - 1}{2(x { }^{2}  + 1)}  = 0

_________________________

ɪ _{2} =  \sf \int \frac{2dx}{(x {}^{2}  + 1) {}^{2} }  \\  \red{put \: x =  \tan \theta} \\  \red{ \sf \: dx =  \sec {}^{2}  \theta \: d \theta} \\  \\ ɪ _{2} = 2 \sf \int \frac{ \sec {}^{2} \theta \: d \theta  }{(1 +  \tan {}^{2} \theta) {}^{2}  }  \\  \\ ɪ _{2} =  \sf2  \int \frac{ \sec {}^{2} \theta \: d \theta }{( \sec {}^{2} \theta) {}^{2}  }  \\  \\  ɪ _{2} =  2\int  \sf\frac{ \sec {}^{2} d \theta }{ \sec {}^{4}  \theta}  \\  \\ ɪ _{2} =   \int \sf \frac{1 d \theta}{ \sec {}^{2}  \theta}  \\  \\ ɪ _{2} =  \sf 2\int  \cos {}^{2} \theta d\theta \\  \\  \boxed{ \int2 \cos {}^{2}  \theta \: d \theta = 2 \cos {}^{2}  \theta} \\  \\ ɪ _{2} =  \int \sf(1 +  \cos {}^{2}  \theta) d \theta \\  \\  ɪ _{2} =  \frac{ \theta +  \sin2 \theta}{2}  + c _{2} \\  \\  \boxed{ \red{x = tan \theta}} \\  \\  \sin {}^{2}  \theta =  \frac{2 \tan \theta}{1 +  \tan {}^{2} \theta }  \\  \\  \sf \sin  {}^{2}  \theta =  \frac{2x}{1 + x {}^{2} }  \\  \\ ɪ _{2} =  \sf \tan { }^{ - 1} x +  \frac{x}{1 + x {}^{2} }  +  c_{2} \\  \\

Put in Equation 1st :-

 \green{ɪ =  ɪ_{1} +ɪ _{2}  } \\  \\  \boxed{   \orange { ɪ =   \sf\frac{ - 1}{2(x {}^{2} + 1) }  +  { \tan}^{ - 1} x  +  \frac{x}{(x {}^{2} + 1) }  + c}}

Attachments:
Similar questions