0!=1 proof and Explain how ?
Answers
Answered by
1
The factorial of a number is defined as:
n!=n∗(n−1)∗(n−2)∗(n−3)∗...∗1n!=n∗(n−1)∗(n−2)∗(n−3)∗...∗1
So:
5!=5∗4∗3∗2∗1=1205!=5∗4∗3∗2∗1=120
4!=4∗3∗2∗1=244!=4∗3∗2∗1=24
Hence, it can be observed that :
n!=n∗(n−1)!n!=n∗(n−1)!
From this equation, substituting 1 for n:
1!=1∗(1−1)!1!=1∗(1−1)!
1!=1∗0!1!=1∗0!
0!=1/10!=1/1
0!=1
Please select as brainliest
n!=n∗(n−1)∗(n−2)∗(n−3)∗...∗1n!=n∗(n−1)∗(n−2)∗(n−3)∗...∗1
So:
5!=5∗4∗3∗2∗1=1205!=5∗4∗3∗2∗1=120
4!=4∗3∗2∗1=244!=4∗3∗2∗1=24
Hence, it can be observed that :
n!=n∗(n−1)!n!=n∗(n−1)!
From this equation, substituting 1 for n:
1!=1∗(1−1)!1!=1∗(1−1)!
1!=1∗0!1!=1∗0!
0!=1/10!=1/1
0!=1
Please select as brainliest
Similar questions