Math, asked by rahul200544, 9 months ago

0.14 Verify that the indicated values are the zeroes of the quadratic polynomials
(1) x2+ root 2x -4, root 2, -2root 2
(1)x2+2root2 x -6,-3root 2,root 2
Also find the sum and product of the zeroes in each case.​

Answers

Answered by Anonymous
39

Given :

The quadratic polynomials are :

  •  \sf {x}^{2}  +  \sqrt{2} x - 4
  •  \sf {x}^{2}  + 2 \sqrt{2} x - 6

Task :

To verify

  • √2 , -2√2 are the roots of the polynomial x² + √2x - 4 and
  • -3√2 , √2 are the roots of the polynomial x² + 2√2x - 6
  • and also to verify the relationship between the coefficients .

Solutions :

 \sf {x}^{2}  +  \sqrt{2} x - 4 \\   =   \sf{x}^{2}  -  \sqrt{2} x + 2 \sqrt{2} x - 4 \\   =  \sf x(x -  \sqrt{2} )  + 2 \sqrt{2} x(x - \sqrt{2} ) \\    \sf= (x -  \sqrt{2} )(x  +   2 \sqrt{2} )

Thus , the roots are :

x - √2 = 0 and x + 2√2 = 0

→ x = √2 and → x = -2√2

The relationship are :

 \sf{sum \: of \:  \:  the zeroes = \dfrac{ -coefficient \:  of  \: x}{coefficient  \: of   \: {x}^{2} } }

 \sf \implies \sqrt{2}  + ( - 2 \sqrt{2} ) =  \dfrac{ -  \sqrt{2}}{1}  \\   \sf\implies -  \sqrt{2}  =  -  \sqrt{2}

and again ,

 \sf{product \: of \: zeroes =  \dfrac{constant}{coefficient \: of \:  {x}^{2} } }

 \sf \implies( \sqrt{2} )( - 2 \sqrt{2} ) =  \dfrac{ - 4}{1}  \\  \sf  \sf\implies - 4 =  - 4

___________________________

 \sf {x}^{2}  + 2 \sqrt{2} x - 6 \\  \sf = x + 3 \sqrt{2}  x-  \sqrt{2} x - 6 \\  \sf = x(x + 3 \sqrt{2} ) -  \sqrt{2} (x + 3 \sqrt{2} ) \\  \sf = (x -  \sqrt{2} )(x + 3 \sqrt{2} )

Thus , the roots are :

x - √2 = 0 and x + 3√2 = 0

→ x = √2 and → x = -3√2

Now the relations of coefficients

 \sf{sum \: of \:  \:  the zeroes = \dfrac{ -coefficient \:  of  \: x}{coefficient  \: of   \: {x}^{2} } }

 \sf \sqrt{2}  - 3 \sqrt{2}  =  -  \dfrac{2 \sqrt{3} }{1}  \\    \sf\implies - 2 \sqrt{2}  =  - 2 \sqrt{2}

and

 \sf{product \: of \: zeroes =  \dfrac{constant}{coefficient \: of \:  {x}^{2} } }

  \sf\sf( \sqrt{2} )( -  3 \sqrt{2} ) =   \sf\dfrac{ - 6}{1}  \\  \implies - 6 =  - 6

 \bf{Hence \:   \: verified }

Answered by Anonymous
86

Answer:

\underline{ \bf{\dag}\:\:\large{\textit{Question 1 :}}}

:\implies\sf {x}^{2} + \sqrt{2} x - 4 \\\\\\:\implies\sf {x}^{2} - \sqrt{2} x + 2 \sqrt{2} x - 4 \\\\\\:\implies\sf x(x - \sqrt{2} ) + 2 \sqrt{2} x(x - \sqrt{2} ) \\\\\\:\implies\sf(x - \sqrt{2} )(x + 2\sqrt{2} )\\\\\\:\implies\sf x=\sqrt{2}\quad or\quad x=-\:2\sqrt{2}

\rule{100}{1}

\underline{\bigstar\:\:\textsf{Relation b/w zeroes and coefficient :}}

\qquad\underline{\bf{\dag}\:\:\textsf{Sum of Zeroes :}}\\\dashrightarrow\tt\:\: \alpha+\beta = \dfrac{-\:b}{a}\\\\\\\dashrightarrow\tt\:\: \sqrt{2} + (-\:2\sqrt{2}) = \dfrac{-\sqrt{2}}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt -\:\sqrt{2}=-\:\sqrt{2}}}}\\\\\\{\qquad\underline{\bf{\dag}\:\:\textsf{Product of Zeroes :}}}\\\\\dashrightarrow\tt\:\: \alpha \times \beta = \dfrac{c}{a}\\\\\\\dashrightarrow\tt\:\: \sqrt{2} \times (-\:2\sqrt{2}) = \dfrac{-4}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{ \red{\tt -\:4 =-\:4}}}

\rule{200}{2}

\underline{ \bf{\dag}\:\:\large{\textit{Question 2 :}}}

:\implies\sf {x}^{2} + 2 \sqrt{2} x - 6 \\\\\\:\implies\sf x + 3 \sqrt{2} x- \sqrt{2} x - 6 \\\\\\:\implies\sf x(x + 3 \sqrt{2} ) - \sqrt{2} (x + 3 \sqrt{2} )\\\\\\:\implies\sf (x - \sqrt{2} )(x + 3 \sqrt{2} )\\\\\\:\implies\sf x=\sqrt{2}\quad or\quad x=-\:3\sqrt{2}

\rule{100}{1}

\underline{\bigstar\:\:\textsf{Relation b/w zeroes and coefficient :}}

\qquad\underline{\bf{\dag}\:\:\textsf{Sum of Zeroes :}}\\\dashrightarrow\tt\:\: \alpha+\beta = \dfrac{-\:b}{a}\\\\\\\dashrightarrow\tt\:\: \sqrt{2} + (-\:3\sqrt{2}) = \dfrac{-2\sqrt{2}}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt -\:2\sqrt{2}=-\:2\sqrt{2}}}}\\\\\\{\qquad\underline{\bf{\dag}\:\:\textsf{Product of Zeroes :}}}\\\\\dashrightarrow\tt\:\: \alpha \times \beta = \dfrac{c}{a}\\\\\\\dashrightarrow\tt\:\: \sqrt{2} \times (-\:3\sqrt{2}) = \dfrac{-6}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{ \red{\tt -\:6 =-\:6}}}

Similar questions