Math, asked by manojkumarsahubmy, 4 months ago

0.17
What is the height of a solid cylinder of radius 5 cm and total surface area of 660 cm?​

Answers

Answered by 2008shrishti
4

\huge\colorbox{magneta}{Answer}

Radius of Cylinder = 5 cm

Total surface area of cylinder = 2\pi r(h+r)2πr(h+r)

= 2 \times 3.14 \times 5(h+5)2×3.14×5(h+5)

Since we are are given that total surface area 660 cm sq

So, 660=2 \times 3.14 \times 5(h+5)660=2×3.14×5(h+5)

660=31.4(h+5)660=31.4(h+5)

\frac{660}{31.4}=h+5

31.4

660

=h+5

21.0191082803=h+521.0191082803=h+5

21.0191082803 -5=h21.0191082803−5=h

16.019=h16.019=h

Thus the height of the cylinder 16.019 cm.

\huge\colorbox{magneta}{Explanation}

\small\colorbox{blue}{Hope this answer will help you.✌️}

Answered by FIREBIRD
9

Answer:

The height of the cylinder is 16 cm

Step-by-step explanation:

We Have :-

Radius of Cylinder = 5 cm

Total Surface Area of the Cylinder = 660cm²

To Find :-

Height of the cylinder

Formula Used :-

total \: surface \: area \: of \: the \: cylinder \:  =  \: 2 \: \pi \: r \: ( \: h  \:  +  \: r \: ) \: sq \: units

Solution :-

total \: surface \: area \: of \: the \: cylinder \:  =  \: 2 \: \pi \: r \: ( \: h  \:  +  \: r \: ) \: sq \: units \\  \\ 660 \:  =  \: 2 \: \pi \: r \: ( \: h  \:  +  \: r \: ) \\  \\ 660 \:  =  \: 2 \times  \dfrac{22}{7}  \times 5 \times ( \: h \:  +  \: 5 \: ) \\  \\ h \:  +  \: 5 \:  =  \:  \dfrac{660 \times 7}{2 \times 22 \times 5}  \\  \\ h \:  +  \: 5 \:  =  \:  \dfrac{4620}{220}  \\  \\ h \:  +  \: 5 \:  =  \: 21 \\  \\  h \:  =  \: 21 \:  -  \: 5 \\  \\ h \:  =  \: 16 \\  \\ height \: of \: the \: cylinder \: is \: 16 \: cm

Similar questions