Math, asked by pranabghadei153, 19 days ago

0-2 frequency-1
2-4frequency-2
4-6frequency-1
6-8frequency-5
8-10frequency-6
10-12frequency-2
12-14frequency-3
so Q-what is the mode? ​

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Given data is

\begin{gathered} \begin{array}{|c|c|} \bf{Class \: Interval} & \bf{Frequency} \\  \\ 0 - 2 & 1  \\2 - 4 & 2 \\4 - 6 & 1 \\6 - 8 & 5 \\8 - 10 & 6\\ 10 - 12 & 2\\ 12 - 14 & 3 \end{array}\end{gathered} \\

We know,

Mode of data is given by

\boxed{ \boxed{\sf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}} \\

where,

l is the lower limit of Modal class

h is the height of the interval

\sf \: {f_0} \: is \: frequency \: of \: class \: preceding \: modal \: class \\

\sf \: {f_1} \:  is \:  frequency \:  of \:  modal  \: class \\

\sf \: {f_2} \:  is \:  frequency  \: of \:  class \:  succeeding \:  modal  \: class \\

Now, from given data we have

Modal class is 8 - 10

So,

\rm \: l = 8 \\

\rm \: h = 2 \\

\rm \: {f_0} = 5 \\

\rm \: {f_1} = 6 \\

\rm \: {f_2} = 2 \\

So, on substituting the values, we get

\rm \: Mode = 8 + \dfrac{6 - 5}{12 - 5 - 2} \times 2 \\

\rm \: Mode = 8 + \dfrac{1}{12 - 7} \times 2 \\

\rm \: Mode = 8 + \dfrac{1}{5} \times 2 \\

\rm \: Mode = 8 + 0.4 \\

\rm\implies \:\rm \: Mode = 8.4 \\

\rule{190pt}{2pt}

Additional Information :-

1. Mean using Direct Method

\boxed{\rm{  \:Mean \:  = \dfrac{ \sum f_i x_i}{ \sum f_i} \: }} \\

2. Mean using Short Cut Method

\boxed{\rm{  \:Mean \:  =A +  \dfrac{ \sum f_i d_i}{ \sum f_i} \: }} \\

3. Mean using Step Deviation Method

\boxed{\rm{  \:Mean \:  =A +  \dfrac{ \sum f_i u_i}{ \sum f_i} \times h \: }} \\

Answered by BrainlyTomHolland
23

Mode:-

A mode is that value among the observations which occurs most often, that is, the value of the observations having the maximum frequency.

\boxed{ \begin{array}{ c|c }  \textsf{ \textbf{Class Interval  }}&\textsf{ \textbf{ Frequency}} \\ \underline{ \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: }& \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\   0 - 2&1 \\ 2 - 4&2 \\ 4 - 6&1 \\ 6 - 8& \:  \:  \: 5_{f_{0}}\\ 8 - 10& \:  \:  \:  6_{f_{1}} \\ 10 - 12& \:  \:  \: 2_{f_{2}} \\ 12 - 14&3 \end{array}}

 \quad \star \underbrace{ \underline{ \boxed{  \mathrm{Mode} = l +  \left\lbrace \dfrac{{f_{1}}-{f_{0}}}{{2f_{1}}-{f_{0}-{f_{2}}}}\right \rbrace \times h} }}

We know,

  • l = lower limit of the modal class,
  • h = size of the class Interval,
  • {f_{1}} = frequency of the modal class,
  • {f_{0}} = frequency of the class preceding the modal class,
  • {f_{2}} = frequency of the class succeeding the modal class.

Let's substitute the given values,

l = 8 \\

f _{1} = 6 \\

h = 2 \\

f _{0} = 5 \\

f _{2} = 2 \\

  : \longmapsto 8 +  \left\lbrace \dfrac{6 - 5}{2(6)-{5 - {2}}}\right \rbrace \times 2\\  \\

  : \longmapsto 8 +  \left\lbrace \dfrac{1}{12-{5 - {2}}}\right \rbrace \times 2\\  \\

  : \longmapsto 8 +  \left\lbrace \dfrac{1}{12{- 7 {}}}\right \rbrace \times 2\\  \\

  : \longmapsto 8 +   \dfrac{1}{ 5}  \times 2\\  \\

  : \longmapsto 8 +   \dfrac{2}{ 5}  \\  \\

  : \longmapsto 8.4 \\  \\

∴The Mode of the data above is 8.4

Similar questions