Math, asked by poornimahl1995, 3 days ago

0.2x+0.3y=1.3
0.4x+0.5y=2.3 linear equation by substitution method

Answers

Answered by lakshmanm46
1

Answer:

convert the 45,000 minutes into days

Answered by EuphoricBunny
1

☘️ Solution:

\sf \: First \:  multiply \:  both  \: the \:  equations \\  \sf  with \:  10.  \sf \:  So \:  that, \:  we  \: can  \: solve \:  \\  \sf it \:  easily   \: as  \: decimal \:  get's  \: removed \\  \sf \:  by  \: this. \\  \\  \tt \: 0.2x + 0.3y = 1.3 \:  \times 10 \\  \tt2x + 3y = 13 \:  \:  -  - (i) \\ \\  \tt 0.4x + 0.5y = 2.3 \:  \times10 \\ \tt 4x + 5y = 23 \:  -  - (ii) \\  \\

  \tt  \: 2x + 3y = 13 \\  \tt → \:  2x = 13 - 3y \\ → \tt \: x =  \frac{13 - 3y}{2}  \:  -  - (iii) \\  \\

 \sf Substituting\: value \:of \:x \:in \:eq. (ii):

 \tt 4x + 5y = 23 \\  \tt→4( \frac{13 - 3y}{2}) + 5y = 23   \\→ \tt26 - 6y  + 5y = 23 \\  → \tt \:  - 6y + 5y = 23 - 26 \\ → \tt - y =  - 3 \\ → \tt y = 3 \\  \\

 \sf Substituting\: value\: of\: y\: in\: equation\: (iii):

 \tt \:  →x =  \frac{13 - 3y}{2}  \\  → \tt \: x =  \frac{13 - 3(3)}{2}  \\  → \tt \: x =  \frac{13 - 9}{2}  \\  → \tt \: x =  \frac{4}{2}  \\  → \tt \: x = 2\\

So, the value of x = 2 and y = 3

☘️ Answer:

  • x = 2
  • y = 3
Similar questions