0-4 Factorise y²-5y +6
Answers
Answered by
1
Answer:
(y-2)(y-3)
Step-by-step explanation:
Given:
p(y)=y^2-5y+6p(y)=y
2
−5y+6
\textbf{To find:}To find:
\text{Factorize $p(y)$ using factor theorem}Factorize p(y) using factor theorem
\textbf{Solution:}Solution:
\textbf{Factor theorem:}Factor theorem:
\text{(x-a) is a factor of f(x) iff f(a) =0}(x-a) is a factor of f(x) iff f(a) =0
p(y)=y^2-5y+6p(y)=y
2
−5y+6
p(2)=2^2-5(2)+6p(2)=2
2
−5(2)+6
p(2)=4-10+6=0p(2)=4−10+6=0
\therefore\text{y-2 is a factor of $p(y)$}∴y-2 is a factor of p(y)
p(3)=3^2-5(3)+6p(3)=3
2
−5(3)+6
p(3)=9-15+6=0p(3)=9−15+6=0
\therefore\text{y-3 is a factor of $p(y)$}∴y-3 is a factor of p(y)
\implies\bf\,p(y)=(y-2)(y-3)
⟹p(y)=(y−2)(y−3)
Answered by
12
SOL.....
=y²-3y-2y+6
=y(y-3)-2(y-3)
=(y-2) (y-3)
=y²-3y-2y+6
=y(y-3)-2(y-3)
=(y-2) (y-3)
Similar questions