Math, asked by adarshyadav5, 5 months ago

0.5x + x/3=0.25x+7?​

Answers

Answered by Anonymous
104

Answer:

Qsɪɴ :

\dashrightarrow{\sf{{0.5x} +  \dfrac{x}{3}  = {0.25x}  + 7}}

\begin{gathered}\end{gathered}

Sʟɪɴ :

\dashrightarrow{\sf{\dfrac{5x}{10} +  \dfrac{x}{3}  = {\dfrac{25x}{100} }  + 7}}

\dashrightarrow{\sf{ \cancel{\dfrac{5x}{10}} +  \dfrac{x}{3}  = {\cancel{\dfrac{25x}{100}}}  + 7}}

\dashrightarrow{\sf{{\dfrac{x}{2}} +  \dfrac{x}{3}  = {\dfrac{x}{4}}  + 7}}

Taking x/4 to L.H.S,

\dashrightarrow{\sf{{\dfrac{x}{2}} +  \dfrac{x}{3}  - {\dfrac{x}{4}}  = 7}}

Taking LCM,

\dashrightarrow{\sf{{\dfrac{(x \times 6) + (x \times 4) - (x \times 3)}{12}}  = 7}}

\dashrightarrow{\sf{{\dfrac{6x + 4x-3x}{12}}  = 7}}

\dashrightarrow{\sf{{\dfrac{10x-3x}{12}}  = 7}}

\dashrightarrow{\sf{{\dfrac{7x}{12}}  = 7}}

Multiplying both side by 12

\dashrightarrow{\sf{{\dfrac{7x}{12} \times 12}  = 7 \times 12}}

\dashrightarrow{\sf{{\dfrac{7x}{\cancel{12}} \times  \cancel{12}}  = 84}}

\dashrightarrow{\sf{7x = 84}}

Taking L.H.S to R.H.S

\dashrightarrow{\sf{x =  \dfrac{84}{7} }}

\dashrightarrow{\sf{x =  \cancel{\dfrac{84}{7}}}}

\dashrightarrow{\sf{x =  12}}

\dashrightarrow{\underline{\underline{\sf{x =  12}}}}

\longrightarrow{\underline{\boxed{\sf{\pink{x =  12}}}}}

The value of x is 12.

\begin{gathered}\end{gathered}

Vʀɪғɪɪɴ :

\dashrightarrow{\sf{{0.5x} +  \dfrac{x}{3}  = {0.25}  + 7}}

Putting value of (x = 12)

\dashrightarrow{\sf{{0.5 \times 12} +  \dfrac{12}{3}  = {0.25 \times 12}  + 7}}

\dashrightarrow{\sf{{6} +  \dfrac{12}{3}  = {3}  + 7}}

\dashrightarrow{\sf{{6} +  \dfrac{12}{3}  = 10}}

Taking LCM of 6 + 12/3.

\dashrightarrow{\sf{\dfrac{(6 \times 3 ) + (12 \times 1)}{3}  = 10}}

\dashrightarrow{\sf{\dfrac{18 +12}{3}  = 10}}

\dashrightarrow{\sf{\dfrac{30}{3}  = 10}}

\dashrightarrow{\sf{ \cancel{\dfrac{30}{3}}  = 10}}

\dashrightarrow{\underline{\underline{\sf{10 = 10}}}}

\longrightarrow{\underline{\boxed{\sf{\pink{LHS= RHS}}}}}

∴ Hence Verified!

\begin{gathered}\end{gathered}

Lʀɴ Mʀ :

BODMAS :

BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

  • ↠ B - Brackets,
  • ↠ O - Order of powers or roots,
  • ↠ D - Division,
  • ↠ M - Multiplication 
  • ↠ A - Addition,
  • ↠ S - Subtraction.

It means that expressions having multiple operators need to be simplified from left to right in this order only.

BODMAS RULE :

First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

  • ↠ Addition (+)
  • ↠ Subtraction (-)
  • ↠ Multiplication (×)
  • ↠ Division (÷)
  • ↠ Brackets ( )

\begin{gathered}\end{gathered}

Rᴇʟᴀᴛᴇᴅ Qᴜᴇsᴛɪᴏɴ :

  • ✧ https://brainly.in/question/46117162
  • ✧ https://brainly.in/question/46239088
  • ✧ https://brainly.in/question/47015156
  • ✧ https://brainly.in/question/46445000
  • ✧ https://brainly.in/question/47199717

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions