Math, asked by bamniyamansingh73, 6 months ago

0.8 Rationalize the denominator of
X=1/7+4√3​

Answers

Answered by Anonymous
3

Answer:

 =  >  7  -  4 \sqrt{3}

Step-by-step explanation:

Since, \:the \: denominator = 7 + 4 \sqrt{3}  , \\  it's  \: rationalising \: factor  \\ = 7 - 4 \sqrt{3} \\  Therefore,   \\ \frac{1}{7 + 4 \sqrt{3} }  =  \frac{1}{7 + 4 \sqrt{3} }   \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } \\   = \frac{7 - 4 \sqrt{3} }{49 - 48}  \\ Since, \\ [(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3})   = (7) {}^{2} - (4 \sqrt{3} ) {}^{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 49 - 48  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  1] \\ </p><p> =   &gt;   7 - 4 \sqrt{3}

Answered by amritaSN04
3

Answer:

7-4√3

Step-by-step explanation:

multiply both denominator and numerator by (7-4√3) so that we can use the identity

(a+b)(a-b) = -b²

=> (7-4√3)/[(7+4√3)(7-4√3)]

=> (7-4√3)/(7² - (4√3)²)

=> (7-4√3)/(49 - 48)

=> (7-4√3)/ 1

=> 7-4√3

Similar questions