Math, asked by gargharsha42, 1 year ago

√0.85*(0.105+0.024-0.08)/0.022*0.25*1.7.
a) √11 b) √1.1 c) 11. d) √0.11​

Answers

Answered by Anjali120704
6

√0.85*(0.105+0.024-0.08)/0.022*0.25*1.7=√1.1

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Simplify-} \\

{\sf  \:  \:  \:  \sqrt{ \dfrac{ 0.85×(0.105+0.024-0.008)}{0.022×0.25×1.7}} }

 \bf \underline{Solution-} \\

{ \:  \:  \:  \:  \sqrt{ \dfrac{ 0.85×(0.105+0.024-0.008)}{0.022×0.25×1.7}}}

{ \:  \:  \:  \:  \:  \implies\sqrt{ \dfrac{  \dfrac{85}{100}  \times  \left( \dfrac{105}{1000} + \dfrac{24}{1000} - \dfrac{8}{1000}  \right)}{ \dfrac{22}{1000} × \dfrac{25}{100} × \dfrac{17}{10} }}}

{\implies\sqrt{ \dfrac{  \dfrac{85}{100}  \times  \left( \dfrac{105 + 24 - 8}{1000}   \right)}{ \dfrac{22 \times 25 \times 17}{1000 \times 100 \times 10}  }}}

{\implies\sqrt{ \dfrac{  \dfrac{85}{100}  \times  \dfrac{121}{1000}   }{ \dfrac{9350}{1000000}  }}}

{~~~~~~~~~\implies\sqrt{ \dfrac{  \dfrac{10285}{100000}     }{ \dfrac{9350}{1000000}  }}}

{~~~~~~~\implies\sqrt{\dfrac{ \cancel{10285}^{935} }{ \cancel{100000}^{1} }   \times \dfrac{ \cancel{100000}^{1}  \:  \:  \times 10}{ \cancel{9350} ^{850} }    }}

{~~~~~~~~~~~~~~\implies\sqrt{ \dfrac{   \cancel{9350}^{11} }{ \cancel{850}}    }}

{~~~~~~~~~~~~~~~\implies\sqrt{ 11  }} \\  \\  \\

\rm{{\boxed{Hence, the \: value \: of \: { \sqrt{ \dfrac{ 0.85×(0.105+0.024-0.008)}{0.022×0.25×1.7}  } \: is \: \sqrt{11}} }}}

Similar questions