Physics, asked by krishnagovinda160, 10 months ago

0) A particle performing S.H.M. with a period of 6 sec
is at the positive e.p. At time t = 1 sec, the particle
is at a distance of 3 cm from this position. Find the
amplitude of motion.
​

Answers

Answered by nirman95
15

Answer:

Given:

SHM particles has time period of 6 seconds. At time = 1 sec, it is at a distance of 3cm from mean position.

To find:

Amplitude of the SHM

Concept:

Let us consider that the equation of the SHM be :

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\boxed{ \bold{ \sf{ \red{x = a \sin( \omega t)}}}}

Also assuming that the initial phase is zero , i.e the particle starts from equilibrium position.

Calculation:

Considering amplitude to be "a"

Putting in all the data available :

  \therefore \: x = a \sin( \omega t)

 \implies \: 3 = a \sin( \dfrac{2\pi}{T } \times 1 )

 \implies \: 3 = a \sin( \dfrac{2\pi}{6 } \times 1 )

 \implies 3 = a \sin( \dfrac{\pi}{3} )

 \implies 3 = a  (\dfrac{ \sqrt{3} }{2} )

  \implies  \: a = 2 \sqrt{3}  \: cm

Final answer :

 \boxed{ \large{ \blue{amplitude = 2 \sqrt{3} cm}}}

Answered by Anonymous
4

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \underline{ \boxed{ \bold{ \huge{ \purple{Answer}}}}} \\  \\  \star \sf \:  \bold{ \orange{Given}} \\  \\  \mapsto \sf \: time \: period \: (T) = 6 \: s \\  \\  \mapsto \sf \: displacement \: from \: e.p. \: (x) = 3 \: cm \\  \\  \mapsto \sf \: time \: require \: (t) = 1 \: s \\  \\  \star \sf \:  \bold{ \orange{To \: Find}} \\  \\  \mapsto \sf \: amplitude \: of \: shm \: (a)  \\  \\  \star \sf \:  \bold{ \orange{Formula}} \\  \\  \mapsto \sf \: formula \: of \: displacement \: from \: e.p. \\  \sf \: in \: SHM \: is \: given \: as... \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{\boxed{ \bold{ \sf{ \blue{x = a \sin( \omega{t}) }}}}} \\  \\  \mapsto \sf \: formula \: of \: angular \: freq. \: is \: given \: as \\  \\   \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \boxed{ \blue{ \sf{ \bold{ \omega =  \frac{2{ \pi}}{T} }}}}} \\  \\  \star \sf \:  \bold{ \orange{Calculation}} \\  \\  \mapsto \sf \: x = a \sin( \frac{2{ \pi}}{T}  \times t)  \\  \\  \mapsto \sf \: 3 = a \sin( \frac{2\pi}{6} \times 1 )  \\  \\  \mapsto \sf \: 3 = a \sin( \frac{\pi}{3} )  \\  \\  \mapsto \sf \: a =  \frac{3}{ \sin( \frac{\pi}{3} ) }  = 2 \sqrt{3}  \: cm \: ( \because \:  \sin( \frac{\pi}{3})  =  \frac{ \sqrt{3} }{2} ) \\  \\  \therefore \underline{ \boxed{ \sf{ \bold{ \red{Amplitude = 2 \sqrt{3}  \: cm}}}}}

Similar questions