Math, asked by sarveshkumarjha23, 1 day ago

0 AP and BP bisect LA and LB in a parallelogram ABID. Also CR and DR bisect LL and Lo intersecting BP and AP ant o and a respectively. Find LAOD, (BOC, LAPR and LORO Is O P Q R rectangle? P​

Answers

Answered by pushkarkoli76
0

Answer:

Step-by-step explanation:

ABCD is a parallelogram, in which ∠A=60

o

.

⇒  ∠A+∠B=180

o

            [ Sum of adjacent angles of parallelogram are supplementary ]

⇒  60

o

+∠B=180

o

.

∴  ∠B=120

o

.

⇒  ∠D=∠B=120

o

         [ Opposite angles of parallelogram are equal ]

⇒  ∠A=∠C=60

o

         [ Opposite angles of parallelogram are equal ]

AP bisects ∠A

∴  ∠DAP=∠PAB=30

o

.

BP bisects ∠B

∴  ∠CBP=∠PBA=60

o

In △PAB,

⇒  ∠PAB+∠PBA+∠APB=180

o

.

⇒  30

o

+60

o

+∠APB=180

o

⇒  ∠APB=90

o

.      

In △PBC,

⇒  ∠PBC+∠PCB+∠BPC=180

o

.

⇒  60

o

+60

o

+∠BPC=180

o

.

⇒  ∠BPC=60

o

In △ADP,

⇒  ∠PAD+∠ADP+∠APD=180

o

.

⇒  30

o

+120

o

+∠APD=180

o

.

⇒  ∠APD=30

o

.

In △PBC,

⇒  ∠BPC=∠CBP=60

o

.    [ linear angles are supplementary ]

⇒  BC=PC      [ Sides opposite to equal angles of a triangle are equal ]     ----- ( 1 )

In △ADP,

⇒  ∠APD=∠DAP=30

o

.

⇒  AD=DP          [ Sides opposite to equal angles of triangle are equal ]

But AD=BC            [ Opposite sides of parallelogram are equal ]

⇒  So, BC=DP          ----- ( 2 )

From ( 1 ) and ( 2 ), we get

⇒  DP=PC

⇒  P is the mid-point of CD

Similar questions