0 কেনদের বৃওর AP,AQ দুটি জ্য৷এর মধৌ বিনদু যথাঞমে R ও S proved কর O,R,A,S বিনদু চারটি সমবৃসহ
Answers
Answer:
বৃত্ত একটি সমতলীয় জ্যামিতিক চিত্র যার বিন্দুগুলো কোনো নির্দিষ্ট বিন্দু থেকে সমদূরত্বে অবস্থিত। নির্দিষ্ট বিন্দুটি বৃত্তের কেন্দ্র। নির্দিষ্ট বিন্দু থেকে সমদূরত্ব বজায় রেখে কোনো বিন্দু যে আবদ্ধ পথ চিত্রিত করে তাই বৃত্ত। কেন্দ্র হতে বৃত্তস্থ কোনো বিন্দুর দূরত্বকে ব্যাসার্ধ বলে।
Step-by-step explanation:
মনে করি, O সমতলের কোনো নির্দিষ্ট বিন্দু এবং r নির্দিষ্ট পরিমাপ। সমতলস্থ যে সকল বিন্দু O থেকে r দূরত্বে অবস্থিত, তাদের সেট বৃত্ত, যার কেন্দ্র O ও ব্যাসার্ধ r. চিত্রে O বৃত্তের কেন্দ্র, A, B ও C বৃত্তস্থ বিন্দু। OA,OB ও OC এর প্রত্যেকটি বৃত্তটির ব্যাসার্ধ।
সমতলস্থ কতিপয় বিন্দুকে সমবৃত্ত বিন্দু বলা হয় যদি বিন্দুগুলো দিয়ে একটি বৃত্ত যায় অর্থাৎ, এমন একটি বৃত্ত থাকে যাতে বিন্দুগুলো অবস্থিত হয়। উপরের চিত্রে A, B ও C সমবৃত্ত বিন্দু। বৃত্তের অভ্যন্তর ও বহির্ভাগ
যদি কোনো বৃত্তের কেন্দ্র O এবং ব্যাসার্ধ r হয় তবে O থেকে সমতলের যে সকল বিন্দুর দূরত্ব r থেকে কম তাদের সেটকে বৃত্তটির অভ্যন্তর এবং O থেকে সমতলের যে সকল বিন্দুর দূরত্ব r থেকে বেশি তাদের সেটকে বৃত্তটির বহির্ভাগ বলা হয। বৃত্তের অভ্যন্তরস্থ দুইটি বিন্দুর সংযোজক রেখাংশ সম্পূর্ণভাবে বৃত্তের অভ্যন্তরেই থাকে।
কোনো বৃত্তের অভ্যন্তরস্থ একটি বিন্দু ও বহিঃস্থ একটি বিন্দুর সংযোজক রেখাংশ বৃত্তটিকে একটি ও কেবল একটি বিন্দুতে ছেদ করে। চিত্রে, P বৃত্তের অভ্যন্তরস্থ একটি বিন্দু এবং Q বৃত্তের বহিঃস্থ একটি বিন্দু। PQ রেখাংশ বৃত্তটিকে কেবল R বিন্দুতে ছেদ করে। বৃত্তের দুইটি ভিন্ন বিন্দুর সংযোজক রেখাংশ বৃত্তটির একটি জ্যা। বৃত্তের কোনো জ্যা যদি কেন্দ্র দিয়ে যায় তবে জ্যাটিকে বৃত্তের ব্যাস বলা হয়। অর্থাৎ বৃত্তের কেন্দ্রগামী যেকোনো জ্যা হলো ব্যাস। চিত্রে, AB ও AC বৃত্তটির দুইটি জ্যা এবং বৃত্তটির কেন্দ্র O|। এদের মধ্যে AC জ্যাটি ব্যাস; কারণ জ্যাটি বৃত্তটির কেন্দ্রগামী। OA ও OC বৃত্তের দুইটি ব্যাসার্ধ। সুতরাং, বৃত্তের কেন্দ্র প্রত্যেক ব্যাসের মধ্যবিন্দু। অতএব প্রত্যেক ব্যাসের দৈর্ঘ্য 2r, যেখানে r বৃত্তটির ব্যাসার্ধ।
উপপাদ্য ১। বৃত্তের কেন্দ্র ও ব্যাস ভিন্ন কোনো জ্যা এর মধ্যবিন্দুর সংযোজক রেখাংশ ঐ জ্যা এর ওপর লম্ব।
মনে করি, O কেন্দ্রবিশিষ্ট ABC বৃত্তে ব্যাস নয় এমন একটি জ্যা AB এবং এই জ্যা এর মধ্য বিন্দু M । O,M যোগ করি।
প্রমাণ করতে হবে যে, OM রেখাংশ AB জ্যা এর উপর লম্ব।
অঙ্কন : O, A এবং O, B যোগ করি।
প্রমাণ :
ধাপ সমূহ যথার্থতা
(১)ΔOAM এবং ΔOBM এ
AM = BM
OA = OB
এবং OM =OM
সুতরাং, ΔOAM≅ΔOBM
.⋅. ∠OMA=∠OMB
(২) যেহেতু কোণদ্বয় রৈখিক যুগল কোণ এবং তাদের পরিমাপ সমান,
সুতরাং, ∠OMA=∠OMB = ১ সমকোণ।
অতএব, OM⊥AB. (প্রমাণিত)
[M, AB এর মধ্যবিন্দু]
[ উভয়ে একই বৃত্তের ব্যাসার্ধ]
[ সাধারণ বাহু ]
[ বাহু-বাহু-বাহু উপপাদ্য ]
অনুসিদ্ধান্ত ১। বৃত্তের যেকোনো জ্যা এর লম্ব-দ্বিখণ্ডক কেন্দ্রগামী।
অনুসিদ্ধান্ত ২। যেকোনো সরলরেখা একটি বৃত্তকে দুইয়ের অধিক বিন্দুতে ছেদ করতে পারে না।