Math, asked by vaishaliadmuthe2722, 8 months ago

0)
At what rate of interest a certain sum will be doubled in 8 years?​

Answers

Answered by TheVenomGirl
10

Answer :

  • At 12.5% rate of interest sum will be doubled in 8 years!!

⠀⠀━━━━━━━━━━━━

Given :

  • Time = T = 8 years

Solution :

Let us assume that,

  • Principal = P

  • SI = P

Also,

We know that,

  • SI = PTR / 100

By using the above formula,

\sf \dashrightarrow \:  \:  \: Rate = \dfrac{100 \times P }{8 \times P}  \\  \\  \\  \sf \dashrightarrow \:  \:  \: \dfrac{100}{8}  \\  \\  \\  \sf \dashrightarrow \:  \:  \:{ \underline{ \boxed{ \sf{ \blue{ \: 12.5 \: per \: annum. }}}}} \:  \bigstar

Therefore, at 12.5% rate of interest sum will be doubled in 8 years!!

⠀⠀━━━━━━━━━━━━

\boxed{\begin{minipage}{7 cm}\boxed{\underline{\underline{\bigstar\:\bf\:Extra\:Brainly\:knowlegde\:\bigstar}}}\\\\1) Profit = SP - CP\\\\2) Loss = CP - SP\\\\3) Profit\% = (Profit in Rs.)*100/CP\\\\4) Loss\% = (Loss in Rs.)*100/CP\\\\5) SP = CP*(100+P\%)/100\\\\6) SP = CP*(100-L\%)/100\\\\7) CP = SP*100/(100+P\%)\\\\8) CP = SP*100/(100-L\%)\\\\9) Discount =MP - SP\\\\10) Discount\%=(Discount in Rs.)*100/MP\\\\11) SP = MP*(100-D\%)/100\\\\12) MP = SP*100/(100-D\%)\\\\\end{minipage}}

Answered by InfiniteSoul
1

\sf{\underline{\boxed{\large{\blue{\mathsf{Correct\: Question}}}}}}

  • At what rate of interest a certain sum will be doubled in 8 years?

_______________________

\sf{\underline{\boxed{\large{\blue{\mathsf{Solution}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • principle = p
  • amount = 2p
  • interest = 2p - p = p
  • time = 8yrs

_______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • rate = ?????

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{Interest =\dfrac{p\times r\times t}{100}}}}}

\sf\longrightarrow p = \dfrac{ p \times rate \times 8}{100}

\sf\longrightarrow r = \dfrac{ p \times 100}{p\times 8}

\sf\longrightarrow r = \dfrac{ 100 }{8}

\sf\longrightarrow r = \dfrac{ 50}{4}

\sf\longrightarrow r = \dfrac{25}{2}

\sf\implies r = 12.5

_____________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • principle will be doubled in 8years when the rate is 12.5%
Similar questions