Math, asked by keshavgoel15082006, 9 months ago

(0)
cos (90° - A) sin (90° – A)/ tan (90 degree-A)
= 1 - cos2 A

Answers

Answered by rajeswaridande96
14

 \frac{ \cos(90 - a)  \sin(90 - a) }{ \tan(90 - a) }   \\ remember \: that \\  \cos(90 - a)  =  \sin(a)  \\  \sin(90 - a)  =  \cos(a)  \:  \\  \tan(90 - a)  =  \cot(a)  \\  \cot(a)  =  \frac{ \cos(a) }{ \sin(a) }  \\ so \:  \frac{ \cos(90 - a) \sin(90 - a)  }{ \tan(90 - a) }   \\  =   \frac{ \sin(a) \cos(a)  }{ \cot(a) }  \\  =  \frac{ \sin(a)  \cos(a) }{ \frac{ \cos(a) }{ \sin(a) } }  \\  =  \sin(a)  \cos(a) \times   \frac{ \sin(a) }{ \cos(a) }  \\  =  \sin(a)  \times  \sin(a)  \\  =  {sin}^{2} a \\ we \: know \: that \:   \\ {sin}^{2} a +  {cos}^{2} a = 1  \\ from \: this \\  {sin}^{2} a = 1 -  {cos}^{2} a \\ hence \: proved

Hope this helps you mate......

Please mark it as brainliest.......!!!!!!!!

Similar questions