Math, asked by urankarmayuresh28, 1 day ago

(0) DABCD is a trapezium. CD || AB. If DO = 3, CO=x-5, BO=x-3 and AO-3x - 19, then answer the following questions. D 3 x-5 x-3 37-19 A B (a) Prove AAOBACOD. (b) Write the corresponding sides of A AOB and A COD and frame an equation involving x. (c) Find the value of x.​

Answers

Answered by aryankhaneja7
2

Answer:

For Fig.a,

AB∥CD     [ Given ]

∴   Quadrilateral ABCD is a trapezium.

∴  

CO

AO

=

DO

BO

          [ Diagonals of trapezium divides each other proportionally ]

⇒  

4x−2

4

=

2x+4

x+1

⇒  4(2x+4)=(x+1)(4x−2)

⇒  8x+16=4x

2

−2x+4x−2

⇒  4x

2

−6x−18=0

⇒  2x

2

−3x−9=0

⇒  (x−3)(2x+3)=0

∴   x=3 or x=

2

−3

(2) For Fig.(b),

AB∥CD     [ Given ]

∴   Quadrilateral ABCD is a trapezium.

∴  

CO

AO

=

DO

BO

          [ Diagonals of trapezium divides each other proportionally ]

⇒  

5x−3

3x−1

=

6x−5

2x+1

⇒  (3x−1)(6x−5)=(2x+1)(5x−3)

⇒  18x

2

−15x−6x+5=10x

2

−6x+5x−3

⇒  8x

2

−20x+8=0

⇒  2x

2

−5x+2=0

⇒ (x−2)(2x−1)=0

∴   x=2 or x=

2

1

(3) For Fig.(c),

AB∥CD     [ Given ]

∴   Quadrilateral ABCD is a trapezium.

∴  

CO

AO

=

DO

BO

          [ Diagonals of trapezium divides each other proportionally ]

⇒  

x−3

3x−19

=

4

x−4

⇒  (3x−19)(4)=(x−4)(x−3)

⇒  12x−76=x

2

−3x−4x+12

⇒  x

2

−19x+88=0

⇒  (x−8)(x−11)=0

∴   x=8 or x=11

Step-by-step explanation:

Answered by sudiproul112
2

Answer:

search-icon-header

Search for questions & chapters

search-icon-image

Class 10

>>Maths

>>Triangles

>>Criteria for Triangle Similarity

>>(i) In Fig. (a), if AB ∥ CD, find the va

Question

Bookmark

(i) In Fig. (a), if AB ∥ CD, find the value of x.

(ii) In Fig. (b), if AB ∥ CD, find the value of x.

(iii) If Fig. (c), AB ∥ CD. if OA = 3x - 19, OB = x - 4, OC = x - 3 and OD = 4,find x.

969165

expand

Medium

Solution

verified

Verified by Toppr

(1) For Fig.a,

AB∥CD [ Given ]

∴ Quadrilateral ABCD is a trapezium.

CO

AO

=

DO

BO

[ Diagonals of trapezium divides each other proportionally ]

4x−2

4

=

2x+4

x+1

⇒ 4(2x+4)=(x+1)(4x−2)

⇒ 8x+16=4x

2

−2x+4x−2

⇒ 4x

2

−6x−18=0

⇒ 2x

2

−3x−9=0

⇒ (x−3)(2x+3)=0

∴ x=3 or x=

2

−3

(2) For Fig.(b),

AB∥CD [ Given ]

∴ Quadrilateral ABCD is a trapezium.

CO

AO

=

DO

BO

[ Diagonals of trapezium divides each other proportionally ]

5x−3

3x−1

=

6x−5

2x+1

⇒ (3x−1)(6x−5)=(2x+1)(5x−3)

⇒ 18x

2

−15x−6x+5=10x

2

−6x+5x−3

⇒ 8x

2

−20x+8=0

⇒ 2x

2

−5x+2=0

⇒ (x−2)(2x−1)=0

∴ x=2 or x=

2

1

(3) For Fig.(c),

AB∥CD [ Given ]

∴ Quadrilateral ABCD is a trapezium.

CO

AO

=

DO

BO

[ Diagonals of trapezium divides each other proportionally ]

x−3

3x−19

=

4

x−4

⇒ (3x−19)(4)=(x−4)(x−3)

⇒ 12x−76=x

2

−3x−4x+12

⇒ x

2

−19x+88=0

⇒ (x−8)(x−11)=0

∴ x=8 or x=11

Similar questions