Math, asked by rohitashavgautam070, 1 year ago

0. Equation of the circle which is such that the lengths of the tangents to it from the points (1, 0), (0, 2) and
(3, 2) are 1, root 7 and root 2 respectively ​

Answers

Answered by IamIronMan0
15

Answer:

Let centre be (x , y ) and radius r

Given

(x - 1) {}^{2}  +  {(y - 0)}^{2}  +  {r}^{2}  =  {1}^{2}  \\ (x - 0) {}^{2}  +  {(y - 2)}^{2}  +  {r}^{2}  = 7 \\  {(x - 3)}^{2}  +  {(y - 2)}^{2}  +  {r}^{2}  = 2

Evaluate for x , y and r

( If you are fail to solve let me know I will help you)

Attachments:
Answered by amirgraveiens
13

Equation of the circle is x2+y2-(13/6)x-(7/12)y+13/3=0.

Step-by-step explanation:

Given:

Equation of the circle x^2+y^2+2gx+2fy+c=0

Length of the tangents are 1, \sqrt{7}, \sqrt{2}

So point (1, 0) and length 1

\sqrt{(1)^2+(0)^2+2(g)(1)+2(f)(0)+c} =1

\sqrt{2g+c+1}=1

2g+c+1=\sqrt{1}

⇒2g+c+1=1

c=-2g                   [1]

Point (0, 2) and length \sqrt{7},

\sqrt{(0)^2+(2)^2+2(g)(0)+2(f)(2)+c} =\sqrt{7}

\sqrt{4+4f+c} =\sqrt{7}

4+4f+c=7

4f+c=7-4

4f+c=3                    [2]

Point (3, 2) and length \sqrt{2},

\sqrt{(3)^2+(2)^2+2(g)(3)+2(f)(2)+c}=\sqrt{2}

\sqrt{9+4+6g+4f+c}=\sqrt{2}

13+6g+4f+c=2

6g+4f+c=2-13

6g+4f+c=-11            [3]

Subtracting equation 2 from 3

6g+4f+c-(4f+c)=-11-3

6g+4f+c-4f-c=-13

6g=-13

g=\frac{-13}{6}

Putting value of g in equation 1

c=-2g

c=-2\frac{-13}{6}

c=\frac{13}{3}

Putting value of g and c in equation 3

6g+4f+c=-11

6(\frac{-13}{6} )+4f+\frac{13}{3} =-11

-13+4f+\frac{13}{3} =-11

4f=-11+13-\frac{13}{3}

4f=2-\frac{13}{3}  

4f=\frac{6-13}{3}  

f=\frac{6-13}{3\times 4}  

f=\frac{-7}{12}  

Equation of the circle is,

x^2+y^2+2gx+2fy+c=0

x^2+y^2-\frac{13}{6}x-\frac{7}{12}y+\frac{13}{3}=0

Similar questions