0!=? explain in brief math expert question
Answers
Consider the following expressions :
n × ( n - 1 ) × ( n - 2 ) × ... × { n - ( r - 1 ) }
= n × ( n - 1 ) × ( n - 2 ) × ... × ( n - r + 1 ) = P ( n , r )
= [ n × ( n - 1 ) × ( n - 2 ) × ... × ( n - r + 1 ) ] × (n-r ) ! / ( n-r ) !
Note : [ n × ( n - 1 ) × ( n - 2 ) × ... × ( n - r + 1 ) ] × (n-r ) ! =
[ n × ( n - 1 ) × ( n - 2 ) × ... × ( n - r + 1 ) ] × (n-r ) × ( n - r -1 ) × ( n - r - 2 ) ×... × 3 × 2 × 1 = n !
Thus we must have
[ n × ( n - 1 ) × ( n - 2 ) × ... × ( n - r + 1 ) ] × (n-r ) ! / ( n-r ) ! = n ! / ( n - r ) !
The expression n ! / ( n - r ) ! can be written as
P ( n , r ) = n ! / ( n - r ) !
If n = r ,
P ( n , r ) = P ( n , n ) = n ! / ( n - r ) ! = n ! / 0 !
=> P ( n , n ) = n ! / 0!
=> 0! = n ! / P ( n , n ) ----- ( i )
Now P ( n , r ) = n × ( n - 1 ) × ( n - 2 ) × ... × ( n - r + 1 )
if n = r then ,
P ( n , n ) = n × ( n - 1 ) × ( n - 2 ) × ... × ( r - r + 1 )
= n × ( n - 1 ) × ( n - 2 ) × ... × ( 1 )
= n × ( n - 1 ) × ( n - 2 ) × ... × 3 × 2 × 1
= n !
=> P ( n , n ) = n ! ------ ( ii )
Now from equation ( i ) we have ,
0 ! = n ! / P ( n , n )
= n ! / n ! ------ using equn. ( ii )
= 1
Hence 0 ! = 1