Math, asked by prathameshmalsane6, 3 months ago

0. Find the coordinates of the centre of the
circle passing through the points P(6,- 6),
Q(3, - 7) and R(3, 3).​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

  • A circle passing through the points P(6,- 6), Q(3, - 7) and R(3, 3).

\large\underline{\sf{To\:Find - }}

  • The coordinates of center of Circle.

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

Distance Formula :-

Let us assume a line segment joining the points A and B, then distance between A and B is given by

\sf \:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

 \sf \: where \: coordinates \: of \: A \:  and \:  B \: are \: (x_1,y_1)  \: and \:  (x_2,y_2)

\large\underline{\sf{Solution-}}

Let suppose that coordinates of center be O(x, y).

Since, O is center of circle and coordinates P, Q and R lies on it.

\sf \:  :\implies\: \: OP = OQ = OR = radius \: of \: circle

Now,

Consider,

\rm :\longmapsto\:OR \: = \:  OQ

On squaring both sides, we have

\rm :\longmapsto\: {OR}^{2}  =  {OQ}^{2}

\rm :\longmapsto\:  \cancel{(x - 3)}^{2}  +  {(y - 3)}^{2}  =   \cancel{(x - 3)}^{2}  +  {(y + 7)}^{2}

\rm :\longmapsto\:  \cancel{y}^{2}  + 9 - 6y =   \cancel{y}^{2}  + 49 + 14y

\rm :\longmapsto\:14y + 6y = 9 - 49

\rm :\longmapsto\:20y =  - 40

\bf\implies \:y \:  =  \:  -  \: 2 -  - (1)

Again,

Consider,

\rm :\longmapsto\:OP = OR

On squaring both sides, we have

\rm :\longmapsto\: {OP}^{2}  =  {OR}^{2}

\rm :\longmapsto\: {(x - 6)}^{2}  +  {(y + 6)}^{2}  =  {(x - 3)}^{2}  +  {(y - 3)}^{2}

On substituting the value of 'y = - 2', we have

\rm :\longmapsto\: {(x - 6)}^{2}  +  {( - 2 + 6)}^{2}  =  {(x - 3)}^{2}  +  {( -  - 3)}^{2}

\rm :\longmapsto\:  \cancel{x}^{2}  + 36  - 12x + 16 =   \cancel{x}^{2}  + 9 - 6x + 25

\rm :\longmapsto\:52 - 12x = 34 - 6x

\rm :\longmapsto\: - 12x + 6x = 34 - 52

\rm :\longmapsto\: - 6x =  - 18

\bf\implies \:x \:  =  \: 3 -  - (2)

Hence, Coordinates of center of circle is (3, - 2).

Additional Information :-

Section Formula :-

Section Formula is used to find the co ordinates of the point(Q) Which divides the line segment joining the points (B) and (C) internally,

{\underline{\boxed{\sf{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n} , \: \dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

Midpoint Formula :-

Mid Point formula is used to find the Mid points on any line segment.

{\underline{\boxed{\sf{\quad  \bigg(\dfrac{x_1 + x_2}{2} \; ,\; \dfrac{y_1 + y_2}{2} \bigg) \quad}}}}

Answered by kavitachoudhary88
1

Answer:

coordinates of the centre of the circle are (3, - 2)

Attachments:
Similar questions