0. In A PQR, right-angled at Q, PR + QR = 25 cm and PQ =5 cm. Determine the values of
sin P, cos P and tan P.
Answers
Answered by
3
Given : PQ = 5 cm ,PR + QR = 25 cm
- ∴ PR = 25 - QR
⇒ PR² = PQ² + QR²
⇒ QR² = PR2 - PQ² = (25 - QR)² - (5)²
⇒ QR² = 625 - 50QR + QR² - 25
⇒ 50QR = 600
- ∴ QR = 12 cm
- ∴ PR = 25 - QR = 25 - 12 = 13 cm
Now :
- sin P = QR/PR = 12/13
- cos P = PQ/PR = 5/13
- tan P = QR/PQ = 12/5
Answered by
8
Question:-
In A PQR, right-angled at Q, PR + QR = 25 cm and PQ =5 cm. Determine the values of
sin P, cos P and tan P.
Solutions:-
Let PR be 'x' and QR be = 25-x ,
Using Pythagorus Theorem,
==>PR^2 = PQ^2 + QR^2 ,
x^2 = (5)^2 + (25-x)^2 ,
x^2 = 25 + 625 + x^2 - 50x ,
50x = 650 ,
x = 13 .
therefore,
PR = 13 cm ,
and,
QR = (25 - 13) = 12 cm ,
Now,
Sin P = opposite/hypotenuse = QR/PR = 12/13 ,
Tan P= opposite/adjacent = QR/PQ = 12/5 ,
Cos P= adjacent/hypotenuse = PQ/PR = 5/13.
AnsWeR:-
Similar questions
Math,
2 months ago
Biology,
2 months ago
English,
2 months ago
Social Sciences,
6 months ago
India Languages,
6 months ago
Social Sciences,
11 months ago
Physics,
11 months ago
Physics,
11 months ago