Math, asked by kushagrasingh913, 6 hours ago

00:18:16 III 16. What is the degree of the polynomial ax2 + x + b, if the zeroes of the quadratic polynomial+(a+1)x+ bare 2 and -3?​

Answers

Answered by Anonymous
63

Given :-

  • Zeroes of the polynomial p(x) = x² + (a + 1)x + b are 2 and -3

To Find :-

  • What is the degree of the polynomial?

Formula to be used :-

\boxed{\pink{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\boxed{\pink{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

Solution :-

\qquad ☀️We are given, Zeroes of the polynomial p(x) = x² + (a + 1)x + b are 2 and -3.

\qquad\small\underline{\pmb{\sf \:According \: to \: the \: question :-}}

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{α + β = \dfrac{-b}{a}}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ -3 + 2 = \dfrac{-(a + 1)}{1}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ -1 = -a - 1}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{a = -1 + 1}}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{a = 0}}}\\

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{αβ = \dfrac{c}{a}}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{-3 × 2 = \dfrac{ b}{1}}}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{b = -6}}}\\

  • Therefore, degree of polynomial x-6 will be 1.

Verification :-

\green{\qquad\leadsto\quad \pmb  {\mathfrak{ x² + (0 + 1)x + (-6)}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ x² + x - 6 = 0}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{x² - 2x + 3x - 6 }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{x(x - 2) + 3(x - 2)}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{(x + 3)(x - 2)}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ x + 3 = 0  \: and\:   x - 2 = 0}}\\

\green{\qquad\leadsto\quad \pmb  {\mathfrak{ x = -3\:   and \:  x = 2}}}\\

  • Hence, Verified..!!

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

\qquad \qquad \:\bigstar \:\:\underline {\pmb{ \: Know \: More  \:\::-}}\:\\\\

  • The quadratic formula is _

\boxed{\pmb  {\mathfrak { x = \dfrac{ - b \pm \sqrt{ b^2 - 4ac }}{ 2a} }}}

  • It can be written as :-

\qquad \pmb  {\mathfrak{ \alpha = \dfrac{-b + \sqrt{b^2 - 4ac }}{ 2a }} }

\qquad \pmb  {\mathfrak{\beta = \dfrac{ - b - \sqrt{ b^2 - 4ac }}{ 2a } }}

Where:-

  • α , β are the roots of the quadratic equation . b² - 4ac is a discriminate .

The conditions are as follows :-

\qquad ☀️If D = 0

  • The roots are equal and real .

\qquad ☀️If D > 0

  • The roots are unequal and rational ( if it is a perfect square )

\qquad ☀️If D > 0

  • The roots are distinct and irrational ( if it is not a perfect square )

\qquad ☀️If D < 0

  • The roots are unequal and imaginary .

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Similar questions