0° <
![\alpha \alpha](https://tex.z-dn.net/?f=+%5Calpha+)
< 90° and
![\sqrt{2} \sqrt{2}](https://tex.z-dn.net/?f=+%5Csqrt%7B2%7D+)
tan 2
![\alpha \alpha](https://tex.z-dn.net/?f=+%5Calpha+)
=
![\sqrt{6} \sqrt{6}](https://tex.z-dn.net/?f=+%5Csqrt%7B6%7D+)
then find the value of sin
![\sin\alpha \sin\alpha](https://tex.z-dn.net/?f=++%5Csin%5Calpha+)
![+ \sqrt{3} \cos( \alpha ) + \sqrt{3} \cos( \alpha )](https://tex.z-dn.net/?f=+%2B++%5Csqrt%7B3%7D+%5Ccos%28+%5Calpha+%29+)
Attachments:
![](https://hi-static.z-dn.net/files/d5f/74e54dea2e8c5f8855b996f6f8e94c98.jpg)
Answers
Answered by
1
Answer:
Sin θ + √3(Cos θ) = 2
Step-by-step explanation:
We have,
√2 Tan 2θ = √6
Now,
√2 Tan 2θ = √6
Tan 2θ = √6/√2
Tan 2θ = √(6/2)
Tan 2θ = √3
But we know that,
Tan 60° = √3
So,
Tan 2θ = Tan 60°
Since they are equal now,
2θ = 60°
θ = 60°/2
θ = 30°
Now, we need to find,
Sin θ + √3(Cos θ)
= Sin 30° + √3(Cos 30°)
= (1/2) + √3[(√3)/2]
= (1/2) + (3/2)
= (1 + 3)/2
= 4/2
= 2
Hence,
Sin θ + √3(Cos θ) = 2
Hope it helped and believing you understood it........All the best
Similar questions