Math, asked by bavyanchowdary, 8 days ago

01. Find the value of 'a' if the distance between the points (a 2), (3, 4) is 2✓2

Answers

Answered by BrainlyArnab
1

 \huge \boxed{ \colorbox{red}{ \blue{a = 1 \& 5}}}

Step-by-step explanation:

Q.

Find the value of ‘a’, of the distance between the points (a, 2), (3, 4) is 2√2

.

Solution -

let \: point \\  \\ A( x_{1}, y_{1}) = a,2  \\ =  >  x_{1} = a, y_{1} = 2 \\  \\ B = ( x_{2}, y_{2} )= 3,4 \\  =  >  x_{2} = 3, y_{2} = 4

So,

distance \: AB =2 \sqrt{2}   \\  \\  =  > \sqrt{ { (x_{1} -  x_{2})  }^{2} + ( y_{1}   -  { y_{2}) }^{2} }  = 2 \sqrt{2}   \\ \\   =   > \sqrt{(a -  {3)}^{2} + ( 2 -  {4)}^{2} }   = 2 \sqrt{2} \\  \\  =  >  \sqrt{ {a}^{2}  - 2(a)(3) +  {3}^{2} + ( { - 2)}^{2}  }  = 2 \sqrt{2}  \\  \\  =  >  \sqrt{ {a}^{2} - 6a + 9 + 4 }  = 2 \sqrt{2}  \\  \\  =  >  \sqrt{ {a}^{2} - 6a + 13 }  = 2 \sqrt{2}  \\  \\  =  >  {( \sqrt{ {a}^{2}   - 6a + 13} )}^{2}  = ( {2 \sqrt{2}) }^{2}  \\  \\  =  >  {a}^{2}  - 6a + 13 = 8 \\  \\  =  >  {a}^{2}  - 6a + 13 - 8 = 0 \\  \\  =  >  {a}^{2}  - 6a + 5 = 0 \\  \\  =  >  {a}^{2}  - a - 5a + 5 = 0 \\  \\  =  > a(a - 1) - 5(a - 1) = 0 \\  \\  =  > (a - 1)(a - 5) = 0

The value of a,

a - 1 = 0

a = 1

.

a - 5 = 0

=> a = 5

.

Hence the value of a = 1 or 5.

both will be correct.

hope it helps.

Similar questions