Physics, asked by mukulkaushik20989, 6 months ago

016. Derive an expression for g acceleration due to gravity below the Earth surface and
above the earth surface.​

Answers

Answered by byritesh7483
8

for above the earth surface,

g=G \times  \frac{m}{ {r}^{2} }  -  - (1)

g'= G \times  \frac{m}{(r + h) ^{2} }  -  - (2)

now,

 \frac{g}{g'}  = \frac{ G \times m \times (r + h) ^{2} }{G \times m \times  {r}^{2} }

 \frac{g}{g'}  =  \frac{  {(r+h)}^{2} }{ {r}^{2} }

g {r}^{2}  = g' {(r + h)}^{2}

g = g' (\frac{ {r}^{2} }{ {r}^{2} }  +  \frac{ {h}^{2} }{ {r}^{2} }  +  \frac{2hr}{ {r}^{2} } )

g=g'(1+ \frac{h}{r} )^{2}

or

g'=g(1+ \frac{h}{r} ) ^{-2}

by binomial theorem,

g' = g(1 -  \frac{2h}{r} )

for below the earth surface,

let the density of earth be d,

and

volume at surface,

v =  \frac{4}{3} \pi {r}^{3}

volume at depth h,

v'= \frac{4}{3} \pi(r-h) ^{3}

so,

m=volume \times density

m =  \frac{4}{3} \pi {r}^{3}  \times d

and

m'= \frac{4}{3} \pi ({r-h})^{3}  \times d

g=G \times  \frac{m}{ {r}^{2} }  -  - (1)

g'=G \times  \frac{m'}{ ({r - h})^{2} }  -  - (2)

now putting the values in eq.

g=G \times  \frac{ \frac{4}{3} \pi {r}^{3} \times d }{ {r}^{2} }

g=G \times  \frac{4}{3} \pi rd

and,

g'=G \frac{ \frac{4}{3} \pi  {(r  - h) }^{3} d}{ {(r-h) }^{3} }

g'=G \frac{4}{3} \pi (r-h) d

on dividing,

 \frac{g'}{g}  = \frac{ G  \times   \frac{4}{3}  \pi (r-h)d}{G  \times  \frac{4}{3}   \pi rd}{ }

 \frac{g'}{g}  =\frac{r - h}{r}

g' = g(1- \frac{r}{h} )

Similar questions