Math, asked by pritomsaharup, 5 months ago

02.
A sphere has a volume of 850 m³. Find its surface
area.​

Answers

Answered by Anonymous
30

Given:

  • Volume of sphere = 850 m³.

To Find:

  • Surface Area of sphere.

Solution:

As we know that,

Volume of sphere = 4/3πr³.

⇒850=4/3 × 22/7 × r³

⇒r³ = 850 × 3 × 7 ÷ 4 × 22

⇒r³ = 202.84

⇒r = ³√202.84

⇒r = 5.88 m

Surface area of sphere = 4πr²

⇒ 4 × 22/7 × 5.88 ×5.88

⇒ ≈ 434m²

Hence,

Surface Area of sphere = 434m²


Anonymous: Awesome!
Answered by MяMαgıcıαη
71

\rule{200}4

{ \bold { \underline { \underline{\maltese\:Given\:\maltese }}}} \:

  • \sf{A\:sphere\:has\:a\:volume\:of\:\bf{850\:m^3}}

{ \bold { \underline { \underline{\maltese\:To\:Find\:\maltese}}}} \:

  • \sf{Surface\:area\:of\:sphere}

{ \bold { \underline { \underline{\maltese\:Solution\:\maltese }}}} \:

\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\large\underbrace{\underline{\sf{How\:to\:solve\:it\::}}}

Here, the question says that volume of the sphere is 850 m³. Radius of sphere is not given to us! , but we need radius to find it's surface area , as surface area of sphere is 4πr². Don't worry! here we have volume (850 m³). So, firstly we will find radius by putting values in formula of volume (vol) of sphere (4/3πr³). After finding radius , we will put it's value in formula of surface area (SA) of sphere. Then we will get our answer.

\:\:\:\:\:\:\:\:\:\:\large\underbrace{\underline{\sf{So, \:let's\:start\:solving!\::}}}

\dag\:\underline{\frak{As\:we\:know\:that\::}}

\bigstar\:\underline{\underline {\boxed {\boxed {\sf {Volume_{(Sphere)}\:=\:\dfrac{4}{3}\pi r^3}}}}}

\dag\:\underline{\frak{Puttig\:all\:values\:in\:the\:formula\::}}

\:\:\:\:\:\:\:\ratio\implies \tt{850\:=\:\dfrac{4}{3}\:\times\:\dfrac{22}{7}\:\times\:r^3}

\:\:\:\:\:\:\:\ratio\implies \tt{850\:\times\:\dfrac{3}{4}\:\times\:\dfrac{7}{22}\:=\: r^3}

\:\:\:\:\:\:\:\ratio\implies \tt{\dfrac{850\:\times\:3\:\times\:7}{4\:\times\:22}\:=\: r^3}

\:\:\:\:\:\:\:\ratio\implies \tt{\dfrac{17850}{88}\:=\: r^3}

\:\:\:\:\:\:\:\ratio\implies \tt{\dfrac{\cancel{17850}}{\cancel{88}}\:=\: r^3}

\:\:\:\:\:\:\:\ratio\implies \tt{202.84\:=\:r^3}

\:\:\:\:\:\:\:\ratio\implies \tt{\sqrt[3]{202.84}\:=\:r}

\:\:\:\:\:\:\:\ratio\implies \tt{5.88\:=\:r}

\:\:\:\:\:\:\:\ratio\implies \boxed{\boxed{\tt{r\:=\:5.88}}}

\underline{\boxed {\sf {\therefore  {Radius\:of\:the\:sphere\:=\:\bold{5.88\:m}}}}}\:\bigstar

\large\underline{\bold{Now,}}

\bigstar\:\underline{\underline{\boxed{\boxed {\sf {Surface\:area_{(Sphere)}\:=\:4\pi r^2}}}}}

\dag\:\underline{\frak{Puttig\:all\:values\:in\:the\:formula\::}}

\:\:\:\:\:\:\:\ratio\longmapsto \tt{4\:\times\:\dfrac{22}{7}\:\times\:(5.88)^2}

\:\:\:\:\:\:\:\ratio\longmapsto \tt{\dfrac{4\:\times\:22\:\times\:(5.88)^2}{7}}

\:\:\:\:\:\:\:\ratio\longmapsto \tt{\dfrac{4\:\times\:22\:\times\:5.88\:\times\:5.88}{7}}

\:\:\:\:\:\:\:\ratio\longmapsto \tt{\dfrac{88\:\times\:5.88\:\times\:5.88}{7}}

\:\:\:\:\:\:\:\ratio\longmapsto \tt{\dfrac{88\:\times\:34.5744}{7}}

\:\:\:\:\:\:\:\ratio\longmapsto \tt{\dfrac{3042.5472}{7}}

\:\:\:\:\:\:\:\ratio\longmapsto \tt{\dfrac{\cancel{3042.5472}}{\cancel{7}}}

\:\:\:\:\:\:\:\ratio\longmapsto \boxed{\boxed{\tt{434.6496}}}

\underline{\boxed {\sf {\therefore  {Surface\:area\:of\:the\:sphere\:\approx\:\bold{434\:m^2}}}}}\:\bigstar

\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:{\boxed {\underline {\overline {\bold {\mid\bigstar\:More\:to\:know\:\bigstar\mid}}}}}

\star\:\sf\underline{Formulas\:related\:to\:surface\:area(SA)\:and\:volume(vol) \::-}

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area \;formula \\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

\rule{200}4


Anonymous: Excellent
Anonymous: Amazing!
MяMαgıcıαη: thankew
Similar questions