Math, asked by guptanand347, 7 months ago

02. The length of the diagonal of the cuboid of dimension 8m x 4m x 6m is​

Answers

Answered by shivashankar1451998
0

Step-by-step explanation:

Length of diagonal of cubiod= square root of (8sqaure + 4sqaure + 6sqaure)

diagonal= square root of (64+16+36)

diagonal= square root of (116)

diagonal= 10.7703m

Answered by Agamsain
1

Answer :-

  • Diagonal of cuboid = 10.77 cm

Given :-

  • Length of cuboid = 8 cm
  • Width of cuboid = 4 cm
  • Height of cuboid = 6 cm

To Find :-

  • Diagonal of cuboid = ?

Explanation :-

As we know, we have formulae to find the diagonal of cuboid .

\blue { \boxed { \bf \bigstar \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2} \; \; \bigstar }}

\rm : \; \longmapsto \sqrt{(8)^2+(4)^2+(6)^2} \; \; \; cm

\rm : \; \longmapsto \sqrt{(64)+(16)+(36)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(80)+(36)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(116)} \; \; \; cm

\rm : \; \longmapsto \sqrt{116} \; \; \; cm

\green { \underline { \boxed { \bf : \; \longmapsto 10.77 \; \; \; cm}}} \qquad \bf [Approx.]

Hence, the diagonal of the of the cuboid is 10.77 cm.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions