Math, asked by shrivastavashivani19, 1 month ago

027. In ΔABC, ∠B=90°, AB=12, BC=16. Let D,E

be points on AB and BC respectively so that

DE=10. Then AE2 + CD2

equals.

(A) 356 (B) 500

(C) 544 (D) 578​

Answers

Answered by pardeshianand1979
0

option number is

(A) 356

hope it helps you

Answered by MysticSohamS
3

Answer:

hey here is your solution

pls mark it as brainliest

refer the reference diagram uploaded above

Step-by-step explanation:

to \: find =  \\ AE {}^{2}  + CD {}^{2}  \\  \\ so \: in  \: \: △ABC \\ ∠ABC = 90 \\ by \:  \: pythagoras \: theorem \\  \\ AB {}^{2}  + BC {}^{2}  = AC {}^{2}  \\  \\  = (12) {}^{2}  + (16) {}^{2}  \\  \\  = 256 + 144 \\  \\  =  \sqrt{400}  \\  \\ AC = 20

moreover \: here \\ DE = 10 \\  \\ thus \: now \:  \: dividing \: DE \: and \: AC \\  \\  \frac{DE}{ AC }  =  \frac{10}{20}  \\  \\   \frac{DE}{AC} =  \frac{1}{2}  \\  \\ DE =  \frac{1}{2}  \: AC \\  \\ so \: by \\  \: converse \: of \: midpoint \: theorem \\ we \: can \: conclude \: that \\  \\ D \: and \: E \: are \: midpoints \: of \: AB \: and \: BC \\ respectively \\ and \:  \: DE \:  ||  \: AC \\  \\ so \: hence \: then \\  \\ AD=DB =  \frac{1}{2}  \: AB \\  \\  =  \frac{1}{2}  \times 12 \\  \\ AD=DB = 6.

similarly \: then \\  \\ BE=EC =  \frac{1}{2} BC \\  \\  =  \frac{1}{2}  \times 16 \\  \\ BE=EC = 8.

now \:  \: thus \: then \\ considering \: △ DBC \\ as \: ∠DBC = 90 \\ by \: pythagoras \: theorem \\  \\ DB {}^{2}  +BC  {}^{2}  = DC {}^{2}  \\  \\  = (16) {}^{2}  + (6) {}^{2}  \\  \\  = 256 + 36 \\  \\ DC  {}^{2} = 292 \:  \:  \:  \:  \:  \:  \:  \: (1)

similarly \:   applying  \:  \\ pythagoras \: theorem \: on \: △ABE \\  \\ AB {}^{2}  + BE {}^{2}  = AE {}^{2}  \\  \\  = (12) {}^{2}  + (8) {}^{2}  \\  \\  = 144 + 64 \\  \\ AE {}^{2}  = 208 \:  \:  \:  \:  \:  \: (2)

applying \: now \\ (1) + (2) \\  \\ AE {}^{2} +CD {}^{2}  = 292 + 208 \\  \\ AE {}^{2} +CD {}^{2}  = 500

Attachments:
Similar questions