Math, asked by shivi21gupta, 5 months ago

029. Find the quadratic polynomial whose zeroes are -2 and 5. Verify the relationship between zeroes and coefficients
the polynomial​

Answers

Answered by prince5132
8

GIVEN :-

  • Zeroes of quadratic polynomial are -2 and 5.

TO FIND :-

  • The quadratic polynomial.

SOLUTION :-

As we know that , the quadratic polynomial is given by ,

 :  \implies \displaystyle \sf \: polynomial = x ^{2}  - ( \alpha  +  \beta )x  + ( \alpha  \beta ) \\  \\

  • ɑ = -2.
  • β = 5.

 \\  : \implies \displaystyle \sf \: polynomial =x ^{2}  - ( - 2 + 5)x + ( - 2 \times 5) \\  \\  \\

 : \implies \displaystyle \sf \: polynomial =x ^{2}  - 3x + ( - 10) \\  \\  \\

 : \implies \underline{ \boxed{  \displaystyle \sf \:  \bold{polynomial =x ^{2}  - 3x - 10}}} \\  \\

____________________

Sum of zeroes,

 \\  : \implies \displaystyle \sf \: \alpha  +  \beta  =  \frac{ - coefficient \: of \: x}{coefficient \: of \: x ^{2}  }  \\  \\  \\

: \implies \displaystyle \sf  - 2 + 5 =   \frac{ - ( - 3)}{1}  \\  \\  \\

: \implies  \underline{ \boxed{\displaystyle \sf  \bold{3 = 3}}} \\  \\

Product of zeroes,

 \\ : \implies \displaystyle \sf  \alpha  \beta  =  \frac{constant \: term}{coefficient \: of \: x ^{2} }  \\  \\  \\

: \implies \displaystyle \sf  - 2 \times 5 =  \frac{ - 10}{1}  \\  \\  \\

: \implies \underline{ \boxed{ \displaystyle \sf  \bold{ - 10 =  - 10}}} \\  \\

Hence Verified.

Answered by BrainlyModerator
2

\underline{\underline{ \mathbb{QUADRATIC \:  POLYNOMIAL:-}}}

\rm Let \:  \alpha  =  - 2 \: and \:  \beta  = 5

 \boxed{ \bf{Polynomial = x² - ( \alpha +   \beta )x+( \alpha  \beta )}}

→\sf~x² - [( - 2) +   5 ]x+ [( - 2) \times 5 )]

 →\sf~{x}^{2}  - ( 3)x + ( - 10)

 →\sf~\underline{ \underline{ {x}^{2}  - 3x - 10}}

\underline{\underline{ \mathbb {RELATION:-}}}

 \rm In \:  polynomial  \: ax²+bx+c:-

\star~ \boxed{\bf{ Sum  \: of  \: polynomial = \dfrac{-b}{a}}}

\star~\boxed{ \bf {Product ~of~ polynomial = \dfrac{c}{a}}}

Similar questions