Math, asked by nayanjatla, 3 months ago

03] Find the value of largest boxes that can be
made by cutting equal square out of curner of a
pies of cardbord of diamension 15cm by 24cm & they
tremine up the side​

Answers

Answered by mathdude500
0

\large\underline\purple{\bold{Solution :-  }}

●Let the side of the square to be cut off be 'x' cm.

●Now, flaps are folded to make an open box having dimensions

•Length of box = 24 - 2x cm

•Breadth of box = 15 - 2x cm

•Height of box = 'x' cm

☆ Volume of box (V) is given by

:  \implies  \tt \: V \:  =  \: length \times breadth \times height

:  \implies  \tt \: V \:  = (24 - 2x)(15 - 2x)x

:  \implies  \tt \: V \:  =  \: (360 - 48x - 30x + 4 {x}^{2} ) \times x

:  \implies  \tt \: V = ( 4{x}^{2}  - 78x +  360) \times x

:  \implies  \tt \: V  = {4x}^{ 3 }  - 78 {x}^{2}  + 360x

☆ On differentiating w. r. t. x both sides, we get

:  \implies  \tt \: \dfrac{dV}{dx}  = \dfrac{d}{dx} ( {4x}^{3}  - 78 {x}^{2}  + 360x)

:  \implies  \tt \: \dfrac{dV}{dx}  = \:  {12x}^{2}  - 156x + 360

☆ For maximum or minimum value,

:  \implies  \tt \: \dfrac{dV}{dx}  = \: 0

:  \implies  \tt \:  {12x}^{2}  - 156x  + 360  = 0

:  \implies  \tt \:12( {x}^{2}  - 13x + 30) = 0

:  \implies  \tt \: {x}^{2}  - 13x +  30 = 0

:  \implies  \tt \: {x}^{2}  - 10x - 3x + 30 = 0

:  \implies  \tt \:x(x - 10) - 3(x - 10) = 0

:  \implies  \tt \:(x - 3)(x - 10) = 0

:  \implies  \tt \:x = 3 \:  \: or \:  \: x = 10

• But x = 10, rejected because otherwise breadth is - 5 units which in absurd.

• Now, Consider

:  \implies  \tt \: \dfrac{ {d}^{2} V}{d {x}^{2} }  =6x - 156

• When x = 3, we get

:  \implies  \tt \: \dfrac{ {d}^{2} V}{d {x}^{2} }  = \: 6 \times 3 \: - 156

:  \implies  \tt \: \dfrac{ {d}^{2} V}{d {x}^{2} }  = \:  18 - 156

:  \implies  \tt \: \dfrac{ {d}^{2} V}{d {x}^{2} }  = \:  - 138

:  \implies  \tt \: \dfrac{ {d}^{2} V}{d {x}^{2} }   < 0

:  \implies  \tt \:V \: is \: maximum \: when \: x \:  = 3

• Dimension of box

 \tt \: Length \:  of  \: box = 24 - 2x = 24 - 6 = 18 \: cm

\tt \:Breadth  \: of  \: box = 15 - 2x = 15 - 6 = 9 \: cm

\tt \:Height of box = x \:  =  \: 3 \: cm

 \boxed{ \red{\tt \:Volume  \: of \:  box  = 18 \times 9 \times 3 = 486 \:  {cm}^{3} }}

Similar questions