Math, asked by devenagarwalroxx, 3 months ago

031. Three numbers are in the ratio 4:5:6. If the sum of the largest and the smallest number equals to the sum of the third number and
55. find the numbers.​

Answers

Answered by mathdude500
0

\large\underline\blue{\bold{Given - }}

  • Three numbers are in the ratio 4:5:6

  • The sum of the largest and the smallest number equals to the sum of the third number and 55.

\large\underline\blue{\bold{To\:Find:-}}

  • The three numbers

\large\underline{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf \: Let \: the \: numbers\: be - \begin{cases} &\sf{4x} \\ &\sf{5x}\\ &\sf{6x} \end{cases}\end{gathered}\end{gathered}

So,

\large \underline{\tt \:{ According  \: to  \: statement }}

  • The sum of the largest and the smallest number equals to the sum of the third number and 55.

\rm :\longmapsto\:4x + 6x = 5x + 55

\rm :\longmapsto\:10x - 5x = 55

\rm :\longmapsto\:5x = 55

\rm :\longmapsto\: \boxed{ \bf \: x \:  =  \: 11}

\begin{gathered}\begin{gathered}\bf \:Hence, \: the \: numbers \: are - \begin{cases} &\sf{4x = 4 \times 11 = 44} \\ &\sf{5x = 5 \times 11 = 55}\\ &\sf{6x = 6 \times 11 = 66} \end{cases}\end{gathered}\end{gathered}

Similar questions