Physics, asked by pratibhajoshi1999, 11 months ago

. 04. The RMS velocity of Nitrogen molecules at N.T.P. is?​

Answers

Answered by ShivamKashyap08
37

Answer:

  • The R.M.S velocity of Nitrogen molecules at N.T.P. is 493 m/s

Given:

Here, N.T.P specifies Standard conditions.

  1. Therefore, Temperature will be 273 K.
  2. Molar mass of Nitrogen = 28 grams.

Explanation:

\rule{300}{1.5}

From the Formula,

\large \bigstar\;{\boxed{\tt V_{RMS} = \sqrt{\dfrac{3\;R\;T\;}{M}}}}

\bold{Here}\begin{cases}\text{R Denotes Universal gas constant} \\ \text{T Denotes Temperature} \\ \text{M Denotes Molar mass (Kg)} \end{cases}

Now,

\large{\boxed{\tt V_{RMS} = \sqrt{\dfrac{3\;R\;T}{M}}}}

Substituting the Values,

\longmapsto\large{\tt V_{RMS} = \sqrt{\dfrac{3 \times 8.314 \times 273}{0.028}}}

As,

  • R = 8.314 J/mol.K
  • Mass of Nitrogen = 28 grams = 0.028 Kg.

\longmapsto\large{\tt V_{RMS} = \sqrt{\dfrac{24.942 \times 273}{0.028}}}

\longmapsto\large{\tt V_{RMS} = \sqrt{\dfrac{6809.166}{0.028}}}

\longmapsto\large{\tt V_{RMS} = \sqrt{243184.5}}

\longmapsto\large{\underline{\boxed{\red{\tt V_{RMS} = 493.137 \; m/s}}}}

The R.M.S velocity of Nitrogen molecules at N.T.P. is 493 m/s (approx).

\boxed{\begin{minipage}{7.5cm} $ \bigstar \underline{\text{Extra Formulas}} \\\\ \tt \star \;V_{(average)} = \sqrt{\dfrac{8 \; R \; T}{\pi \; M}} \\\\ \tt \star \;V_{(mp)} = \sqrt{\dfrac{2 \; R \; T}{ M}} \\\\ \star \; \text{Ratio of Three velocities,} \\ \longmapsto  V_{(RMS)} : V_{(mp)} : V_{(Average)} = \sqrt{3} : \sqrt{2} : \sqrt{\dfrac{8}{\pi}} \\\\ \rule{200}{1} \\ \text{Note} \\ \bullet\;  V_{(mp)} = \text{Most probable Speed} \\ \bullet\;V_{(average)} = \text{Average Speed} $  \end{minipage}}

\rule{300}{1.5}

Answered by Anonymous
42

Question

The RMS velocity of Nitrogen molecules at N.T.P. is

Solution

Given,

The nitrogen molecules are NTP

  • Temperature is 293 K

  • Pressure is 1 atm

To finD

RMS Velocity of the Nitrogen Molecules

\rule{300}{2}

RMS Velocity is given as

\boxed{\boxed{\sf V_RMS = \sqrt{\dfrac{3RT}{M}}}}

\sf{Here}\begin{cases}\sf{T \longrightarrow Temperature }\\\sf{R \longrightarrow Gas Constant}\\ \sf{M \longrightarrow Molar Mass}\end{cases}

\rule{300}{2}

Nitrogen molecules occupy 28g at NTP

  • Nitrogen molecules occupy 28 × 10^-3 Kg at NTP

  • The gas constant is 8.2 NTP conditions

\rule{300}{2}

Substituting the values,we get :

 \longmapsto \:  \tt \: v =  \sqrt{ \dfrac{3 \times 8.2 \times 293}{28 \times  {10}^{ - 3} } }  \\  \\ \:  \longmapsto \:  \tt \: v =  \sqrt{ \dfrac{7207.8 \times  {10}^{3} }{28} }  \\  \\ \longmapsto \ \boxed{\boxed{\tt{v = 160.60 ms^{-1}}}}}

The RMS Velocity of the nitrogen molecules is 160.60 m/s

\rule{300}{2}

\rule{300}{2}

Similar questions