Math, asked by savitasingh771987, 6 days ago

05 A piece of wire 20 cm is cut into two parts one of them being 7 cm long. Each part is bent to form a circle. The ratio of the area of larger circle to smaller circle is Mathem Q1 JE 169 49 13 7 39 28 Q5 Q9 Q1 23 43 Q13 Deselect Skip Next​

Answers

Answered by taslimzainab123
1

GIVEN -

Length of the wire = 20 cm

Length of the cut part = 7 cm

TO FIND -

The ratio of the area of larger to smaller circle

SOLUTION -  

Total length of the wire = 20 cm.

After cutting into two parts, length of one part is 7 cm

So the length of another part becomes = (20 - 7 ) cm = 13cm

When the wire is bent in the form of a circle, length of the wire becomes equal to the circumference of the circle.

we know, circumference of a circle = 2\pi r ( where r is radius of the circle)

For wire of length 7 cm

2 \pir_{1} = 7

r_{1}   = \frac{7}{2\pi }

Thus area of the circle having radius \frac{7}{2\pi }  ( A_{1} ) = \pi r_{1} ^{2}

                                                                           = \pi (\frac{7}{2\pi }) ^{2}

For wire of length 13 cm.            

2\pi r_{2 = 13

r_{2}  = \frac{13}{2\pi }

Thus, area of the circle having radius \frac{13}{2\pi }  ( A_{2} )  =     \pi r_{2} ^{2}

                                                                             =    \pi (\frac{13}{2\pi } )^{2}          

Now,

area of the circle having radius \frac{13}{2\pi }  ( A_{2} )   :  area of the circle having radius \frac{7}{2\pi }  ( A_{1} )  

                                     \pi (\frac{13}{2\pi } )^{2}                     :      \pi (\frac{7}{2\pi }) ^{2}

                                          169                     :   49

∴ The ratio of the area of larger to smaller circle is 169 : 49

                     

                                                                         

Similar questions